Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acad Radiol ; 29(8): 1178-1188, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35610114

RESUMO

RATIONALE AND OBJECTIVES: The burden of coronavirus disease 2019 (COVID-19) airspace opacities is time consuming and challenging to quantify on computed tomography. The purpose of this study was to evaluate the ability of a deep convolutional neural network (dCNN) to predict inpatient outcomes associated with COVID-19 pneumonia. MATERIALS AND METHODS: A previously trained dCNN was tested on an external validation cohort of 241 patients who presented to the emergency department and received a chest computed tomography scan, 93 with COVID-19 and 168 without. Airspace opacity scoring systems were defined by the extent of airspace opacity in each lobe, totaled across the entire lungs. Expert and dCNN scores were concurrently evaluated for interobserver agreement, while both dCNN identified airspace opacity scoring and raw opacity values were used in the prediction of COVID-19 diagnosis and inpatient outcomes. RESULTS: Interobserver agreement for airspace opacity scoring was 0.892 (95% CI 0.834-0.930). Probability of each outcome behaved as a logistic function of the opacity scoring (25% intensive care unit admission at score of 13/25, 25% intubation at 17/25, and 25% mortality at 20/25). Length of hospitalization, intensive care unit stay, and intubation were associated with larger airspace opacity score (p = 0.032, 0.039, 0.036, respectively). CONCLUSION: The tested dCNN was highly predictive of inpatient outcomes, performs at a near expert level, and provides added value for clinicians in terms of prognostication and disease severity.


Assuntos
COVID-19 , Aprendizado Profundo , Algoritmos , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Humanos , Pacientes Internados , Pulmão/diagnóstico por imagem , Morbidade , Estudos Retrospectivos , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos
2.
Front Cardiovasc Med ; 8: 778010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174219

RESUMO

Coronary artery disease (CAD) is a major contributor to morbidity and mortality worldwide. Myocardial ischemia may occur in patients with normal or non-obstructive CAD on invasive coronary angiography (ICA). The comprehensive evaluation of coronary CT angiography (CCTA) integrated with fractional flow reserve derived from CCTA (CT-FFR) to CAD may be essential to improve the outcomes of patients with non-obstructive CAD. China CT-FFR Study-2 (ChiCTR2000031410) is a large-scale prospective, observational study in 29 medical centers in China. The primary purpose is to uncover the relationship between the CCTA findings (including CT-FFR) and the outcome of patients with non-obstructive CAD. At least 10,000 patients with non-obstructive CAD but without previous revascularization will be enrolled. A 5-year follow-up will be performed. The primary endpoint is the occurrence of major adverse cardiovascular events (MACE), including all-cause mortality, non-fatal myocardial infarct, unplanned revascularization, and hospitalization for unstable angina. Clinical characteristics, laboratory and imaging examination results will be collected to analyze their prognostic value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...