Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Bras Ortop (Sao Paulo) ; 56(5): 594-600, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34733431

RESUMO

Objective We are doing a study on patients admitted with hip fractures to determine the impact of COVID-19 on a vulnerable patients group in the United Kingdom. This will help us in making informed decisions about restarting elective surgical services and expanding trauma surgical services. The objectives of the study are: 1) to find the incidence of COVID-19 in patients admitted with hip fractures; 2) To find the 30-day mortality in patients operated with hip fractures; 3) To find the 30-day mortality of patients with hip fracture and COVID 19; and 4) to compare this data with the mortality in hip fractures in previous years. Methods This is a single-center, observational, retrospective, cohort study involving 65 patients who were admitted in our trust with hip fractures. Besides epidemiological data, patient records were followed-up for 14 days to look for COVID positive polymerase chain reaction (PCR) swabs, and the patient records were followed-up for 30 days to look for mortality. Results A total of 64% of the patients had no significant comorbidity. The incidence of hospital-acquired COVID-19 infections in our trust was 9%. Overall, the 30-day mortality was of 15%. Mortality was much higher in COVID positive patients (40%) and in patients with "very high risk" (63%) operated during this period. Conclusion It should be safe to start elective surgery in patients with low, moderate and high risk without an appreciable rise in mortality. We will need more data to understand the impact of COVID-19 on very high risk patients.

2.
PLoS One ; 8(1): e55047, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383051

RESUMO

Subtype-selective ligands are important tools for the pharmacological characterisation of neurotransmitter receptors. This is particularly the case for nicotinic acetylcholine receptors (nAChRs), given the heterogeneity of their subunit composition. In addition to agonists and antagonists that interact with the extracellular orthosteric nAChR binding site, a series of nAChR allosteric modulators have been identified that interact with a distinct transmembrane site. Here we report studies conducted with three pharmacologically distinct nicotinic ligands, an orthosteric agonist (compound B), a positive allosteric modulator (TQS) and an allosteric agonist (4BP-TQS). The primary focus of the work described in this study is to examine the suitability of these compounds for the characterisation of native neuronal receptors (both rat and human). However, initial experiments were conducted on recombinant nAChRs demonstrating the selectivity of these three compounds for α7 nAChRs. In patch-clamp recordings on rat primary hippocampal neurons we found that all these compounds displayed pharmacological properties that mimicked closely those observed on recombinant α7 nAChRs. However, it was not possible to detect functional responses with compound B, an orthosteric agonist, using a fluorescent intracellular calcium assay on either rat hippocampal neurons or with human induced pluripotent stem cell-derived neurons (iCell neurons). This is, presumably, due to the rapid desensitisation of α7 nAChR that is induced by orthosteric agonists. In contrast, clear agonist-evoked responses were observed in fluorescence-based assays with the non-desensitising allosteric agonist 4BP-TQS and also when compound B was co-applied with the non-desensitising positive allosteric modulator TQS. In summary, we have demonstrated the suitability of subtype-selective orthosteric and allosteric ligands for the pharmacological identification and characterisation of native nAChRs and the usefulness of ligands that minimise receptor desensitisation for the characterisation of α7 nAChRs in fluorescence-based assays.


Assuntos
Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Cálcio/metabolismo , Feminino , Hipocampo/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Imagem Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Especificidade por Substrato , Receptor Nicotínico de Acetilcolina alfa7
3.
Mol Pharmacol ; 81(5): 710-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22328718

RESUMO

Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding to an extracellular site located at the interface of two adjacent subunits. In contrast, recent studies have provided evidence that positive allosteric modulators (PAMs) such as TQS (4-(naphthalen-2-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) and allosteric agonists such as 4BP-TQS (4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) interact at an intrasubunit transmembrane site. Here, we describe the synthesis and pharmacological characterization of a series of chemically related allosteric modulators of the α7 nAChR. Minimal changes in the chemical structure of these compounds have been found to exert profound effects on their pharmacological properties. For example, compounds containing a bromine atom at either the ortho or meta position on the phenyl ring, such as 2BP-TQS (4-(2-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) and 3BP-TQS (4-(3-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide), rather than at the para position (4BP-TQS), display no allosteric agonist activity but retain PAM activity on α7 nAChRs, demonstrating the importance of the location of the halogen atom on pharmacological properties. Replacement of the bromine atom in 4BP-TQS with either a chlorine [4CP-TQS (4-(4-chloroophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide)] or an iodine atom [4IP-TQS (4-(4-iodoophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide)] results in compounds that have pharmacological properties characteristic of allosteric agonists but display differences in activation rates, in inactivation rates, and in levels of desensitization. In contrast, replacement of the bromine atom in 4BP-TQS with a fluorine atom [4FP-TQS (4-(4-fluorophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide)] generated a compound that lacks allosteric agonist activity but acts a potentiator of responses to acetylcholine. In addition, 4FP-TQS was found to act as an antagonist of responses evoked by allosteric agonists such as 4BP-TQS. These findings provide evidence of the pharmacological diversity of compounds interacting with the allosteric transmembrane site on α7 nAChRs.


Assuntos
Receptores Nicotínicos/metabolismo , Regulação Alostérica , Animais , Relação Dose-Resposta a Droga , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/química , Relação Estrutura-Atividade , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
4.
Proc Natl Acad Sci U S A ; 108(14): 5867-72, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21436053

RESUMO

Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular "orthosteric" binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site.


Assuntos
Moduladores de Transporte de Membrana/farmacologia , Modelos Moleculares , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Acetilcolina , Aconitina/análogos & derivados , Regulação Alostérica/fisiologia , Animais , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Simulação por Computador , Eletrofisiologia , Humanos , Camundongos , Estrutura Molecular , Mutação de Sentido Incorreto/genética , Naftalenos/química , Técnicas de Patch-Clamp , Quinolinas/química , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Sulfonamidas/química , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...