Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34685770

RESUMO

Alzheimer's disease (AD) is one of the most prominent neurodegenerative diseases, which impairs cognitive function in afflicted individuals. AD results in gradual decay of neuronal function as a consequence of diverse degenerating events. Several neuroimmune players (such as cytokines and growth factors that are key players in maintaining CNS homeostasis) turn aberrant during crosstalk between the innate and adaptive immunities. This aberrance underlies neuroinflammation and drives neuronal cells toward apoptotic decline. Neuroinflammation involves microglial activation and has been shown to exacerbate AD. This review attempted to elucidate the role of cytokines, growth factors, and associated mechanisms implicated in the course of AD, especially with neuroinflammation. We also evaluated the propensities and specific mechanism(s) of cytokines and growth factors impacting neuron upon apoptotic decline and further shed light on the availability and accessibility of cytokines across the blood-brain barrier and choroid plexus in AD pathophysiology. The pathogenic and the protective roles of macrophage migration and inhibitory factors, neurotrophic factors, hematopoietic-related growth factors, TAU phosphorylation, advanced glycation end products, complement system, and glial cells in AD and neuropsychiatric pathology were also discussed. Taken together, the emerging roles of these factors in AD pathology emphasize the importance of building novel strategies for an effective therapeutic/neuropsychiatric management of AD in clinics.


Assuntos
Doença de Alzheimer/metabolismo , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Doença de Alzheimer/imunologia , Quimiocinas/metabolismo , Humanos , Inflamação/patologia , Modelos Biológicos
2.
Neurotox Res ; 35(3): 621-634, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30729451

RESUMO

Alzheimer's disease (AD) is the most common cause of progressive decline of memory function in aged humans. To study about a disease mechanism and progression, animal models for the specific disease are needed. For AD, although highly valid animal models exist, none of the existing models recapitulates all aspects of human AD. The pathogenic mechanisms involved in AD are diverse and thus it is difficult to recapitulate human AD in model organisms. Intracerebroventricular (ICV) injection of okadaic acid (OKA), a protein phosphatase 2A (PP2A) inhibitor, in rats causes neurotoxicity associated with neurofibrillary degeneration. However, this model lacks amyloid pathology as observed in AD. We aimed at combining two different treatments and hence producing a better animal model of AD which may mimic most of the neuropathological, neurobehavioral, and neurochemical changes observed in AD. For this, OKA (200 ng) was microinjected bilaterally into the hippocampus of male Wistar rats followed by exposure of same rats to hypoxic conditions (10%) for 3 days. The result of which, the combination model exhibited tau hyperphosphorylation along with Aß upregulation as evident by western blotting and immunohistochemistry. The observed changes were accompanied with dysfunction of neurotransmitter system, i.e., decreased acetylcholine activity and expression. This combinatorial model also exhibited cognitive deficiency which was assessed by Morris water maze and avoidance tests along with enhanced oxidative stress which is thought to be a major player in AD pathogenesis. Taken together, we established an easily reproducible and reliable rat model for sporadic dementia of Alzheimer's type in rats which allows effective testing of new therapeutic strategies.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Aprendizagem da Esquiva , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipóxia , Masculino , Aprendizagem em Labirinto , Microinjeções , Neurônios/metabolismo , Neurônios/patologia , Ácido Okadáico , Estresse Oxidativo/fisiologia , Ratos Wistar , Técnicas Estereotáxicas
3.
Alzheimers Dement ; 14(7): 913-924, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29601787

RESUMO

INTRODUCTION: Apolipoprotein E (APOE) ε4 is the major genetic risk factor for Alzheimer's disease (AD), but its prevalence is unclear because earlier studies did not require biomarker evidence of amyloid ß (Aß) pathology. METHODS: We included 3451 Aß+ subjects (853 AD-type dementia, 1810 mild cognitive impairment, and 788 cognitively normal). Generalized estimating equation models were used to assess APOE ε4 prevalence in relation to age, sex, education, and geographical location. RESULTS: The APOE ε4 prevalence was 66% in AD-type dementia, 64% in mild cognitive impairment, and 51% in cognitively normal, and it decreased with advancing age in Aß+ cognitively normal and Aß+ mild cognitive impairment (P < .05) but not in Aß+ AD dementia (P = .66). The prevalence was highest in Northern Europe but did not vary by sex or education. DISCUSSION: The APOE ε4 prevalence in AD was higher than that in previous studies, which did not require presence of Aß pathology. Furthermore, our results highlight disease heterogeneity related to age and geographical location.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Disfunção Cognitiva/metabolismo , Idoso , Alelos , Biomarcadores/líquido cefalorraquidiano , Europa (Continente) , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Prevalência
4.
Biochim Biophys Acta Mol Basis Dis ; 1863(7): 1858-1866, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27262357

RESUMO

In the previous study, we demonstrated that dichlorvos induces oxidative stress in dopaminergic neuronal cells and subsequent caspase activation mediates apoptosis. In the present study, we evaluated the effect and mechanism of dichlorvos induced oxidative stress on cell cycle activation in NGF-differentiated PC12 cells. Dichlorvos exposure resulted in oxidative DNA damage along with activation of cell cycle machinery in differentiated PC12 cells. Dichlorvos exposed cells exhibited an increased expression of p53, cyclin-D1, pRb and decreased expression of p21suggesting a re-entry of differentiated cells into the cell cycle. Cell cycle analysis of dichlorvos exposed cells revealed a reduction of cells in the G0/G1 phase of the cell cycle (25%), and a concomitant increase of cells in S phase (30%) and G2/M phase (43.3%) compared to control PC12 cells. Further, immunoblotting of cytochrome c, Bax, Bcl-2 and cleaved caspase-3 revealed that dichlorvos induces a caspase-dependent cell death in PC12 cells. These results suggest that Dichlorvos exposure has the potential to generate oxidative stress which evokes activation of cell cycle machinery leading to apoptotic cell death via cytochrome c release from mitochondria and subsequent caspase-3 activation in differentiated PC12 cells.


Assuntos
Ciclo Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Diclorvós/efeitos adversos , Neurônios Dopaminérgicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Intoxicação por Organofosfatos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Diclorvós/farmacologia , Neurônios Dopaminérgicos/patologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Intoxicação por Organofosfatos/genética , Intoxicação por Organofosfatos/patologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos
5.
Brain Pathol ; 26(2): 139-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26494454

RESUMO

Aluminum is a ubiquitously abundant nonessential element. Aluminum has been associated with neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis, and dialysis encephalopathy. Many continue to regard aluminum as controversial although increasing evidence supports the implications of aluminum in the pathogenesis of AD. Aluminum causes the accumulation of tau protein and Aß protein in the brain of experimental animals. Aluminum induces neuronal apoptosis in vivo and in vitro, either by endoplasmic stress from the unfolded protein response, by mitochondrial dysfunction, or a combination of them. Some, people who are exposed chronically to aluminum, either from through water and/or food, have not shown any AD pathology, apparently because their gastrointestinal barrier is more effective. This article is written keeping in mind mechanisms of action of aluminum neurotoxicity with respect to AD.


Assuntos
Alumínio/toxicidade , Doença de Alzheimer/metabolismo , Alumínio/metabolismo , Doença de Alzheimer/etiologia , Animais , Hipocampo/metabolismo , Humanos
6.
Neurotoxicology ; 51: 116-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26493151

RESUMO

The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of PGC-1α and its downstream targets, i.e. NRF-1, NRF-2 and Tfam in mitochondrial biogenesis. Aluminium lactate (10mg/kg b.wt./day) was administered intragastrically to rats, which were pre-treated with quercetin 6h before aluminium (10mg/kg b.wt./day, intragastrically) for 12 weeks. We found a decrease in ROS levels, mitochondrial DNA oxidation and citrate synthase activity in the hippocampus (HC) and corpus striatum (CS) regions of rat brain treated with quercetin. Besides this an increase in the mRNA levels of the mitochondrial encoded subunits - ND1, ND2, ND3, Cyt b, COX1, COX3 and ATPase6 along with increased expression of nuclear encoded subunits COX4, COX5A and COX5B of electron transport chain (ETC). In quercetin treated group an increase in the mitochondrial DNA copy number and mitochondrial content in both the regions of rat brain was observed. The PGC-1α was up regulated in quercetin treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α. Electron microscopy results revealed a significant decrease in the mitochondrial cross-section area, mitochondrial perimeter length and increase in mitochondrial number in case of quercetin treated rats as compared to aluminium treated ones. Therefore it seems quercetin increases mitochondrial biogenesis and makes it an almost ideal flavanoid to control or limit the damage that has been associated with the defective mitochondrial function seen in many neurodegenerative diseases.


Assuntos
Alumínio/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/administração & dosagem , Fatores de Transcrição/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Encéfalo/enzimologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , Corpo Estriado/metabolismo , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/metabolismo , Masculino , Mitocôndrias/genética , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
JAMA ; 313(19): 1924-38, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25988462

RESUMO

IMPORTANCE: Cerebral amyloid-ß aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies. OBJECTIVE: To use individual participant data meta-analysis to estimate the prevalence of amyloid pathology as measured with biomarkers in participants with normal cognition, subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). DATA SOURCES: Relevant biomarker studies identified by searching studies published before April 2015 using the MEDLINE and Web of Science databases and through personal communication with investigators. STUDY SELECTION: Studies were included if they provided individual participant data for participants without dementia and used an a priori defined cutoff for amyloid positivity. DATA EXTRACTION AND SYNTHESIS: Individual records were provided for 2914 participants with normal cognition, 697 with SCI, and 3972 with MCI aged 18 to 100 years from 55 studies. MAIN OUTCOMES AND MEASURES: Prevalence of amyloid pathology on positron emission tomography or in cerebrospinal fluid according to AD risk factors (age, apolipoprotein E [APOE] genotype, sex, and education) estimated by generalized estimating equations. RESULTS: The prevalence of amyloid pathology increased from age 50 to 90 years from 10% (95% CI, 8%-13%) to 44% (95% CI, 37%-51%) among participants with normal cognition; from 12% (95% CI, 8%-18%) to 43% (95% CI, 32%-55%) among patients with SCI; and from 27% (95% CI, 23%-32%) to 71% (95% CI, 66%-76%) among patients with MCI. APOE-ε4 carriers had 2 to 3 times higher prevalence estimates than noncarriers. The age at which 15% of the participants with normal cognition were amyloid positive was approximately 40 years for APOE ε4ε4 carriers, 50 years for ε2ε4 carriers, 55 years for ε3ε4 carriers, 65 years for ε3ε3 carriers, and 95 years for ε2ε3 carriers. Amyloid positivity was more common in highly educated participants but not associated with sex or biomarker modality. CONCLUSIONS AND RELEVANCE: Among persons without dementia, the prevalence of cerebral amyloid pathology as determined by positron emission tomography or cerebrospinal fluid findings was associated with age, APOE genotype, and presence of cognitive impairment. These findings suggest a 20- to 30-year interval between first development of amyloid positivity and onset of dementia.


Assuntos
Peptídeos beta-Amiloides/análise , Apolipoproteína E4/genética , Encéfalo/patologia , Disfunção Cognitiva/patologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Líquido Cefalorraquidiano/química , Demência/patologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Prevalência , Fatores de Risco
8.
Curr Alzheimer Res ; 11(4): 340-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24720893

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Although, many putative biomarkers are reported for AD, only a few have been validated in the clinical setting. Ubiquitin levels increase in cerebrospinal fluid (CSF) of patients with AD, but its diagnostic value is not clear. In this present study we evaluate the performance of ubiquitin as a diagnostic marker and deduce a statistical association with disease pathology in AD. Ubiquitin levels were estimated in subjects with AD, other forms of dementias, neurological disorders and healthy age matched population. The levels of ubiquitin were significantly higher in subjects with AD when compared with other groups (p<0.0001). A significant positive correlation was observed between ubiquitin, tau and apolipoprotein Eε4 genotype; with Aß42 the correlation was negative. By comparing the effect size of the association between ubiquitin and a diagnosis of AD, we find that high ubiquitin levels are specific for AD. We obtained an odds ratio of 5.6 (95% CI 5.0-7.7) for ubiquitin, towards a diagnosis of AD based on clinical criteria, CSF biomarker signature (Aß42+tau) and apolipoprotein Eε4 genotype. Hence, all our findings taken together provide a strong statistical association linking ubiquitin to the pathology in AD. We also find that, the performance of ubiquitin as a diagnostic marker is comparable to that of CSF Aß42 or tau or apolipoprotein Eε4 genotype considered individually.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Ubiquitina/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Demência/líquido cefalorraquidiano , Feminino , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Razão de Chances , Fragmentos de Peptídeos/líquido cefalorraquidiano , Curva ROC , Sensibilidade e Especificidade , Proteínas tau/líquido cefalorraquidiano
9.
Neurotoxicology ; 41: 154-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24560992

RESUMO

Aluminium is light weight and toxic metal present ubiquitously on earth which has gained considerable attention due to its neurotoxic effects. The widespread use of products made from or containing aluminium is ensuring its presence in our body. There is prolonged retention of a fraction of aluminium that enters the brain, suggesting its potential for accumulation with repeated exposures. There is no known biological role for aluminium within the body but adverse physiological effects of this metal have been observed in mammals. The generation of oxidative stress may be attributed to its toxic consequences in animals and humans. The oxidative stress has been implicated in pathogenesis of various neurodegenerative conditions including Alzheimer's disease and Parkinson's disease. Though it remains unclear whether oxidative stress is a major cause or merely a consequence of cellular dysfunction associated with neurodegenerative diseases, an accumulating body of evidence implicates that impaired mitochondrial energy production and increased mitochondrial oxidative damage is associated with the pathogenesis of neurodegenerative disorders. Being involved in the production of reactive oxygen species, aluminium may impair mitochondrial bioenergetics and may lead to the generation of oxidative stress. In this review, we have discussed the oxidative stress and mitochondrial dysfunctions occurring in Al neurotoxicity. In addition, the ameliorative measures undertaken in aluminium induced oxidative stress and mitochondrial dysfunctions have also been highlighted.


Assuntos
Compostos de Alumínio/toxicidade , Doenças Mitocondriais/etiologia , Síndromes Neurotóxicas , Estresse Oxidativo/efeitos dos fármacos , Animais , Síndromes Neurotóxicas/complicações , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/terapia
10.
Indian J Clin Biochem ; 29(1): 69-73, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24478552

RESUMO

Dietary and lifestyle factors have been shown to have a profound effect on paraoxonase-1 (PON1) activity. Cigarette smoke has been shown to inhibit its mass and activity where as resveratrol has been shown to enhance it. We exposed hepatoma derived cell line (HepG2) to resveratrol and nicotine in varying doses and measured PON1 enzymatic activity and PON1 gene expression. In addition, total protein content of HepG2 cells was also measured. Resveratrol in a dose of 15 µmol/l or above significantly increased the PON1 enzyme activity (p > 0.001) where as nicotine in a dose of 1 µmol/l or higher significantly reduced it (p < 0.05). The resveratrol in this dose also enhanced the PON1 gene expression whereas nicotine decreased it as compared to controls. However, the protein conent of cells was not changed suggesting that they were not cytotoxic in the doses used. Till date the antioxidant vitamins have shown disappointing results against LDL oxidation and cardiovascular protection. However, the effect of resveratrol on PON1 gene expression and activity was significant, suggesting increase in PON1 activity and enhanced gene expression may be its alternative mechanism for offering protection against cardiovascular disease and may be an potential pharmacological agent which can be used for this.

11.
ACS Chem Neurosci ; 5(2): 115-27, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24369695

RESUMO

Microglial cells have been implicated in various neurodegenerative diseases. Previous studies from our lab have shown that dichlorvos (an organophosphate) could induce Parkinson's like features in rats. Recently, we have shown that dichlorvos can induce microglial activation, and if not checked in time could ultimately induce neuronal apoptosis. However, this activation does not always pose a threat to the neurons. Activated microglia also secrete various neuronal growth factors, suggesting that they have beneficial roles in CNS repair. Therefore, it is essential to control their detrimental functions selectively. Here, we tried to find out how microglial cells behave when exposed to dichlorvos in either the presence or absence of potent nitric oxide scavenger and superoxide dismutase mimetic, 4-hydroxy TEMPO (4-HT). Wistar rat pups (1 day) were used to isolate and culture primary microglial cells. We found 4-HT pretreatment successfully attenuated the dichlorvos mediated microglial activation. Moreover, 4-HT pretreatment decreased the up-regulated levels of p53 and its downstream effector, p21. The expression of various cell cycle regulators such as Chk2, CDC25a, and cyclin A remained close to their basal levels when 4-HT pretreatment was given. DNA fragmentation analysis showed significant reduction in the DNA damage of 4-HT pretreated microglia as compared to dichlorvos treated cells. In addition to this, we found 4-HT pretreatment prevented the microglial cells from undergoing apoptotic cell death even after 48 h of dichlorvos exposure. Taken together, our results showed 4-HT pretreatment could successfully ameliorate the dichlorvos induced microglial cell damage.


Assuntos
Óxidos N-Cíclicos/farmacologia , Diclorvós/farmacologia , Hidroxilamina/farmacologia , Inseticidas/farmacologia , Microglia/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Antígeno CD11b/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quinase do Ponto de Checagem 2/metabolismo , Ciclina A/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/efeitos dos fármacos , Dano ao DNA , Genes p53/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fosfatases cdc25/metabolismo
12.
Neuropharmacology ; 76 Pt A: 27-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23891641

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide. The etiology is multifactorial, and pathophysiology of the disease is complex. Data indicate an exponential rise in the number of cases of AD, emphasizing the need for developing an effective treatment. AD also imposes tremendous emotional and financial burden to the patient's family and community. The disease has been studied over a century, but acetylcholinesterase inhibitors and memantine are the only drugs currently approved for its management. These drugs provide symptomatic improvement alone but do less to modify the disease process. The extensive insight into the molecular and cellular pathomechanism in AD over the past few decades has provided us significant progress in the understanding of the disease. A number of novel strategies that seek to modify the disease process have been developed. The major developments in this direction are the amyloid and tau based therapeutics, which could hold the key to treatment of AD in the near future. Several putative drugs have been thoroughly investigated in preclinical studies, but many of them have failed to produce results in the clinical scenario; therefore it is only prudent that lessons be learnt from the past mistakes. The current rationales and targets evaluated for therapeutic benefit in AD are reviewed in this article. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Terapia de Alvo Molecular/tendências , Fármacos Neuroprotetores/farmacologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Humanos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Proteínas tau/efeitos dos fármacos
13.
Mol Neurobiol ; 49(1): 163-75, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23884618

RESUMO

The neurotoxic consequences of acute high-level as well as chronic low-level organophosphates exposure are associated with a range of abnormalities in nerve functions. Previously, we have shown that after 24 h of dichlorvos exposure, microglia become activated and secrete pro-inflammatory molecules like nitric oxide, tumour necrosis factor-α and interleukin-1ß. Here, we extended our findings and focused on the neuronal damage caused by dichlorvos via microglial activation. For this, neurons and microglia were isolated separately from 1-day-old Wistar rat pups. Microglia were treated with dichlorvos for 24 h and supernatant was collected (dichlorvos-induced conditioned medium, DCM). However, when 4-hydroxy TEMPO (4-HT) pretreatment was given, we observed significant attenuation of dichlorvos-induced microglial activation; we also collected the supernatant of this culture (4-HT + DCM, TDCM). Next, we checked the effects of DCM on neurons and found heavy loss in viability as evident from NF-H immunostaining and MTT results, whereas dichlorvos alone-treated neurons showed comparatively less damage. However, we observed significant increase in neuronal viability when cells were treated with TDCM. Semi-quantitative PCR and western blot results revealed significant increase in p53, Bax and cytochrome c levels along with caspase 3 activation after 24 h of DCM treatment. However, TDCM-treated neurons showed significant decrease in the expression of these pro-apoptotic molecules. Taken together, these findings suggest that 4-HT can significantly attenuate dichlorvos-induced microglial activation and prevent apoptotic neuronal cell death.


Assuntos
Apoptose/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Diclorvós/toxicidade , Hidroxilamina/farmacologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Diclorvós/antagonistas & inibidores , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Ratos , Ratos Wistar
14.
Biol Open ; 2(11): 1119-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244848

RESUMO

The two hallmarks of Alzheimer's disease (AD) are neurofibrillary tangles and amyloid plaques. Neurofibrillary tangles are formed due to the hyperphosphorylation of tau protein. There is an urgent need to develop a reliable biomarker for the diagnosis of AD. Cerebrospinal fluid (CSF) is surrounding the brain and reflects the major neuropathological features in the AD brain. Diagnosis, disease progression and drug actions rely on the AD biomarkers. Mainly CSF tau and phosphorylated tau (p-Tau) have been observed to serve the purpose for early AD. Keeping in view the early appearance of p-Tau in CSF, we analyzed p-Tau levels in 23 AD, 23 Non AD type dementia (NAD), 23 Neurological control (NC) and 23 Healthy control (HC) North Indian patients. The levels of p-Tau were found to be increased in AD patients (67.87±18.05 pg/ml, SEM 3.76) compared with NAD (47.55±7.85 pg/ml, SEM 1.64), NC (34.42±4.51 pg/ml, SEM 0.94) and HC (27.09±7.18 pg/ml, SEM 1.50). The resulting sensitivity for AD with NAD was 80.27% whereas with respect to the NAD, NC and HC was 85.40%. Therefore elevated levels of p-Tau in AD can be exploited as a predictive biomarker in North Indian AD patients.

15.
Toxicol Appl Pharmacol ; 273(2): 365-80, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24084166

RESUMO

The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits-NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases.


Assuntos
Alumínio/toxicidade , Regulação da Expressão Gênica , Renovação Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Renovação Mitocondrial/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Wistar , Fatores de Transcrição/biossíntese
16.
Am J Alzheimers Dis Other Demen ; 28(4): 318-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23687185

RESUMO

Alzheimer's disease (AD), the most common neurodegenerative and dementing disorder, is characterized by extracellular amyloid deposition, intracellular neurofibrillary tangle formation, and neuronal loss. We are still behind in AD research in terms of knowledge regarding understanding its pathophysiology and designing therapeutics because of the lack of an accurate animal model for AD. A complete animal model of AD should imitate all the cognitive, behavioral, and neuropathological features of the disease. Partial models are currently in use, which only mimic specific and not all of the components of AD pathology. Currently the transgenic animals are the popular models for AD research, but different genetic backgrounds of these transgenic animals remain a major confounding factor. This review attempts to summarize the current literature on nontransgenic animal models of AD and to highlight the potential of exploiting spontaneous and induced animal models for neuropathological, neurochemical, neurobehavioral, and neuroprotective studies of AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Modelos Animais de Doenças , Emaranhados Neurofibrilares/patologia , Doença de Alzheimer/genética , Animais , Humanos
17.
Am J Alzheimers Dis Other Demen ; 28(3): 258-62, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23612909

RESUMO

The etiology of Alzheimer's disease (AD) is multifactorial involving both genetic and environmental factors. Apolipoprotein E (ApoE) gene plays a pivotal role in risk and age of onset of AD. Although it is broadly accepted that ApoE genotype is linked to the pathogenesis of AD, there are still controversial results regarding the association of ApoE levels in cerebrospinal fluid (CSF) with the occurrence of AD. Some studies have shown a positive correlation between CSF ApoE levels and AD, whereas others showed no link. In this study, we measured ApoE levels to assess the usefulness of CSF ApoE as a diagnostic marker of AD by comparing the levels in 3 patient groups and in control participants. No significant difference was observed in CSF ApoE concentrations between the patients with AD and the controls. So, it appears that CSF ApoE measurement does not offer any diagnostic advantage for AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Apolipoproteína E4/líquido cefalorraquidiano , Apolipoproteínas E/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Feminino , Frequência do Gene , Genótipo , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco
18.
J Neurosci Res ; 91(3): 444-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23280485

RESUMO

Dichlorvos, an organophosphate (OP), is known to cause oxidative stress in the central nervous system (CNS). Previously we have shown that dichlorvos treatment promoted the levels of proinflammatory molecules and ultimately induced apoptotic cell death in primary microglial cells. Here we studied the effect of dichlorvos on crucial cell cycle regulatory proteins and the DNA damage sensor ataxia-telangiectasia mutated (ATM). We found a significant increase in p53 and its downstream target, p21, levels in dichlorvos-treated microglial cells compared with control cells. Moreover, dichlorvos exposure promoted the levels of different cell cycle regulatory proteins. These results along with flow cytometry results suggested that primary microglial cells were arrested at G1 and G2/M phase after dichlorvos exposure. We have shown in a previous study that dichlorvos can induce DNA damage in microglia; here we found that microglial cells also tried to repair this damage by inducing a DNA repair enzyme, i.e., ATM. We observed a significant increase in the levels of ATM after dichlorvos treatment compared with control.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Diclorvós/toxicidade , Microglia/efeitos dos fármacos , Cultura Primária de Células , Animais , Animais Recém-Nascidos , Pontos de Checagem do Ciclo Celular/genética , Células Cultivadas , Dano ao DNA/genética , Reparo do DNA/genética , Microglia/metabolismo , Organofosfatos/toxicidade , Ratos , Ratos Wistar
19.
Neurotox Res ; 23(4): 336-57, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22918785

RESUMO

In this study, we investigated the protective effect of chronic quercetin (a natural flavanoid) administration against Al-induced cognitive impairments, oxidative damage, and cholinergic dysfunction in male Wistar rats. Al lactate (10 mg/kg b.wt./day) was administered intragastrically to rats which were pre-treated with quercetin (10 mg/kg b.wt./day, intragastrically) for 12 weeks. At the end of 6 or 12 weeks of the study, several behavioral parameters were carried out to evaluate cognitive functions. Further after 12 weeks of exposure, various biochemical tests and H&E staining were performed to assess the extent of oxidative damage and neurodegeneration, respectively. Al levels were also estimated in HC and CS regions of rat brain. Chronic administration of quercetin caused significant improvement in the muscle coordination, cognition, anxiety, locomotion, and initial exploratory patterns in Al-treated rats. Quercetin supplementation to Al-treated animals also reduced oxidative stress, decreased ROS production, increased MnSOD activity and glutathione levels with decreased lipid peroxidation and protein oxidation. It increased AChE activity and ATP levels in HC and CS regions of rat brain compared to Al-treated rats. Quercetin administration ameliorates Al-induced neurodegenerative changes in Al-treated rats as seen by H&E staining. Further with the help of atomic absorption spectrophotometer, we found that quercetin supplementation to Al-treated rats also decreases the accumulation of Al in the HC and CS regions of rat brain. Taken together the results of this study show that quercetin offers neuroprotection against Al-induced cognitive impairments, cholinergic dysfunction, and associated oxidative damage in rats.


Assuntos
Alumínio/toxicidade , Neurônios Colinérgicos/metabolismo , Transtornos Cognitivos/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Quercetina/farmacologia , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Transtornos Cognitivos/prevenção & controle , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Quercetina/uso terapêutico , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
20.
Toxicol Lett ; 215(1): 62-9, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23041170

RESUMO

Aluminum phosphide (AlP), a widely used fumigant and rodenticide leads to high mortality if ingested. Its toxicity is due to phosphine liberated when it comes in contact with moisture. The exact mechanism of action of phosphine is not known. In this study male Wistar rats were used. The animals received a single dose (20mg AlP/kg body weight i.g.) orally. Basic serum biochemical parameters, activity of mitochondrial complexes, antioxidant enzymes and parameters of oxidative stress, individual mitochondrial cytochrome levels were measured along with tissue histopathology and immunostaining for cytochrome c and compared with controls. The serum levels of creatinine kinase-MB, lactate dehydrogenase, magnesium and cortisol were higher (p<0.01); the activities of mitochondrial complexes I, II, IV were observed to be significantly decreased in liver tissue in treated rats (p<0.01). The activity of catalase was lower (p<0.05) with a significant increase in lipid peroxidation (p<0.05) whereas superoxide dismutase and glutathione peroxidase were unaffected in them. There was a significant decrease in all the cytochromes in brain and liver tissues (p<0.05) with the exception of cytochrome b in brain, the levels of which remained same. Histopathology revealed congestion in most organs with centrizonal hemorrhagic necrosis in liver. Ultra structural changes indicating mitochondrial injury was observed in heart, liver and kidney tissues. There was also a marked reduction in the cytochrome-c immunostaining compared to the controls. Toxicity due to AlP appears to result as a consequence of both-energy insufficiency and oxidative stress, with a possible and preferential interaction with the tissue cytochromes.


Assuntos
Compostos de Alumínio/toxicidade , Praguicidas/toxicidade , Fosfinas/toxicidade , Animais , Encéfalo/enzimologia , Encéfalo/patologia , Catalase/metabolismo , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glutationa Peroxidase/metabolismo , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Microscopia Eletrônica , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , NADH Desidrogenase/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar , Succinato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...