Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 19(12): 1921-1936, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32868372

RESUMO

Stroke remains a leading cause of death and disability worldwide. Despite continuous advances, the identification of key molecular signatures in the hyper-acute phase of ischemic stroke is still a primary interest for translational research on stroke diagnosis, prognosis, and treatment. Data integration from high-throughput -omics techniques has become crucial to unraveling key interactions among different molecular elements in complex biological contexts, such as ischemic stroke. Thus, we used advanced data integration methods for a multi-level joint analysis of transcriptomics and proteomics data sets obtained from mouse brains at 2 h after cerebral ischemia. By modeling net-like correlation structures, we identified an integrated network of genes and proteins that are differentially expressed at a very early stage after stroke. We validated 10 of these deregulated elements in acute stroke, and changes in their expression pattern over time after cerebral ischemia were described. Of these, CLDN20, GADD45G, RGS2, BAG5, and CTNND2 were next evaluated as blood biomarkers of cerebral ischemia in mice and human blood samples, which were obtained from stroke patients and patients presenting stroke-mimicking conditions. Our findings indicate that CTNND2 levels in blood might potentially be useful for distinguishing ischemic strokes from stroke-mimicking conditions in the hyper-acute phase of the disease. Furthermore, circulating GADD45G content within the first 6 h after stroke could also play a key role in predicting poor outcomes in stroke patients. For the first time, we have used an integrative biostatistical approach to elucidate key molecules in the initial stages of stroke pathophysiology and highlight new notable molecules that might be further considered as blood biomarkers of ischemic stroke.


Assuntos
Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/patologia , AVC Isquêmico/sangue , Proteômica , Animais , Cateninas/sangue , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/sangue , AVC Isquêmico/diagnóstico , AVC Isquêmico/genética , Masculino , Camundongos Endogâmicos C57BL , Prognóstico , Proteoma/metabolismo , Transcriptoma/genética , delta Catenina
2.
Transl Stroke Res ; 11(3): 326-336, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31475302

RESUMO

An accurate etiological classification is key to optimize secondary prevention after ischemic stroke, but the cause remains undetermined in one third of patients. Several studies pointed out the usefulness of circulating gene expression markers to discriminate cardioembolic (CE) strokes, mainly due to atrial fibrillation (AF), while only exploring them in small cohorts. A systematic review of studies analyzing high-throughput gene expression in blood samples to discriminate CE strokes was performed. Significantly dysregulated genes were considered as candidates, and a selection of them was validated by RT-qPCR in 100 patients with defined CE or atherothrombotic (LAA) stroke etiology. Longitudinal performance was evaluated in 12 patients at three time points. Their usefulness as biomarkers for AF was tested in 120 cryptogenic strokes and 100 individuals at high-risk for stroke. Three published studies plus three unpublished datasets were considered for candidate selection. Sixty-seven genes were found dysregulated in CE strokes. CREM, PELI1, and ZAK were verified to be up-regulated in CE vs LAA (p = 0.010, p = 0.003, p < 0.001, respectively), without changes in their expression within the first 24 h after stroke onset. The combined up-regulation of these three biomarkers increased the probability of suffering from CE stroke by 23-fold. In cryptogenic strokes with subsequent AF detection, PELI1 and CREM showed overexpression (p = 0.017, p = 0.059, respectively), whereas in high-risk asymptomatic populations, all three genes showed potential to detect AF (p = 0.007, p = 0.007, p = 0.015). The proved discriminatory capacity of these gene expression markers to detect cardioembolism even in cryptogenic strokes and asymptomatic high-risk populations might bring up their use as biomarkers.


Assuntos
Isquemia Encefálica/sangue , Isquemia Encefálica/genética , AVC Embólico/sangue , AVC Embólico/genética , Expressão Gênica , Fibrilação Atrial/sangue , Fibrilação Atrial/genética , Biomarcadores/sangue , Isquemia Encefálica/diagnóstico , AVC Embólico/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
3.
Front Neurol ; 10: 1226, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849809

RESUMO

Background: Atrial fibrillation (AF) systematic screening studies have not shown a clear usefulness in stroke prevention, as AF might present as paroxysmal and asymptomatic. This study aims to determine the usefulness of some blood-biomarkers to identify paroxysmal atrial fibrillation in the context of a screening programme. Methods: A total of 100 subjects aged 65-75 years with hypertension and diabetes were randomly selected. AF was assessed by conventional electrocardiogram (ECG) and 4 weeks monitoring with a wearable Holter device (Nuubo™). N-terminal pro B-type natriuretic peptide (NT-proBNP), apolipoprotein CIII (ApoC-III), von Willebrand factor (vWF), ADAMTS13, urokinase plasminogen activator surface receptor (uPAR), and urokinase plasminogen activator (uPA) were determined in serum/plasma samples and the levels were compared depending on AF presence and mode of detection. Results: The AF prevalence in the studied population was found to be 20%. In seven subjects, AF was only detected after 1 month of Holter monitoring (hAF group). NT-proBNP levels were higher in subjects with AF compared with subjects with no AF (p < 0.0001), even when only taking into account the hAF group (p = 0.031). No significant differences were found in the other biomarkers. The NT-proBNP >95 pg/ml cut-off showed high sensitivity and specificity to detect AF (95%, 66.2%) or hAF (85.72%, 66.2%) and was found to be an independent predictor of AF and hAF in a logistic regression analysis. NT-proBNP correlated with AF burden (r = 0.597, p = 0.024). Conclusion: NT-proBNP was elevated in AF cases not identified by ECG; thus, it may be used as a screening biomarker in asymptomatic high-risk populations, with a promising cut-off point of 95 pg/ml that requires further validation.

4.
Sci Rep ; 8(1): 7899, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784938

RESUMO

The limited accessibility to the brain has turned the cerebrospinal fluid (CSF) into a valuable source that may contribute to the complete understanding of the stroke pathophysiology. Here we have described the CSF proteome in the hyper-acute phase of cerebral ischemia by performing an aptamer-based proteomic assay (SOMAscan) in CSF samples collected before and 30 min after male Wistar rats had undergone a 90 min Middle Cerebral Artery Occlusion (MCAO) or sham-surgery. Proteomic results indicated that cerebral ischemia acutely increased the CSF levels of 716 proteins, mostly overrepresented in leukocyte chemotaxis and neuronal death processes. Seven promising candidates were further evaluated in rat plasma and brain (CKB, CaMK2A, CaMK2B, CaMK2D, PDXP, AREG, CMPK). The 3 CaMK2 family-members and CMPK early decreased in the infarcted brain area and, together with AREG, co-localized with neurons. Conversely, CKB levels remained consistent after the insult and specifically matched with astrocytes. Further exploration of these candidates in human plasma revealed the potential of CKB and CMPK to diagnose stroke, while CaMK2B and CMPK resulted feasible biomarkers of functional stroke outcome. Our findings provided insights into the CSF proteome following cerebral ischemia and identified new outstanding proteins that might be further considered as potential biomarkers of stroke.


Assuntos
Aptâmeros de Nucleotídeos/genética , Biomarcadores/líquido cefalorraquidiano , Isquemia Encefálica/líquido cefalorraquidiano , Encéfalo/metabolismo , Proteoma/análise , Proteômica/métodos , Acidente Vascular Cerebral/líquido cefalorraquidiano , Doença Aguda , Animais , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Humanos , Masculino , Ratos , Ratos Wistar , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...