Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 8: e9518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194325

RESUMO

BACKGROUND: The Mediterranean swordfish stock is overfished and considered not correctly managed. Elucidating the patterns of the Mediterranean swordfish population structure constitutes an essential prerequisite for effective management of this fishery resource. To date, few studies have investigated intra-Mediterranean swordfish population structure, and their conclusions are controversial. METHODS: A panel of 20 microsatellites DNA was used to investigate fine-scale population structuring of swordfish from six main fishing areas of the Mediterranean Sea. RESULTS: This study provides evidence to reject the hypothesis of a single swordfish population within the Mediterranean Sea. DAPC analysis revealed the presence of three genetic clusters and a high level of admixture within the Mediterranean Sea. Genetic structure was supported by significant F ST values while mixing was endorsed by the heterozygosity deficit observed in sampling localities indicative of a possible Wahlund effect, by sampling admixture individuals. Overall, our tests reject the hypothesis of a single swordfish population within the Mediterranean Sea. Homing towards the Mediterranean breeding areas may have generated a weak degree of genetic differentiation between populations even at the intra-basin scale.

2.
Nature ; 572(7771): 648-650, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391584

RESUMO

More than three billion people rely on seafood for nutrition. However, fish are the predominant source of human exposure to methylmercury (MeHg), a potent neurotoxic substance. In the United States, 82% of population-wide exposure to MeHg is from the consumption of marine seafood and almost 40% is from fresh and canned tuna alone1. Around 80% of the inorganic mercury (Hg) that is emitted to the atmosphere from natural and human sources is deposited in the ocean2, where some is converted by microorganisms to MeHg. In predatory fish, environmental MeHg concentrations are amplified by a million times or more. Human exposure to MeHg has been associated with long-term neurocognitive deficits in children that persist into adulthood, with global costs to society that exceed US$20 billion3. The first global treaty on reductions in anthropogenic Hg emissions (the Minamata Convention on Mercury) entered into force in 2017. However, effects of ongoing changes in marine ecosystems on bioaccumulation of MeHg in marine predators that are frequently consumed by humans (for example, tuna, cod and swordfish) have not been considered when setting global policy targets. Here we use more than 30 years of data and ecosystem modelling to show that MeHg concentrations in Atlantic cod (Gadus morhua) increased by up to 23% between the 1970s and 2000s as a result of dietary shifts initiated by overfishing. Our model also predicts an estimated 56% increase in tissue MeHg concentrations in Atlantic bluefin tuna (Thunnus thynnus) due to increases in seawater temperature between a low point in 1969 and recent peak levels-which is consistent with 2017 observations. This estimated increase in tissue MeHg exceeds the modelled 22% reduction that was achieved in the late 1990s and 2000s as a result of decreased seawater MeHg concentrations. The recently reported plateau in global anthropogenic Hg emissions4 suggests that ocean warming and fisheries management programmes will be major drivers of future MeHg concentrations in marine predators.


Assuntos
Organismos Aquáticos/metabolismo , Mudança Climática , Exposição Ambiental/análise , Pesqueiros/provisão & distribuição , Peixes/metabolismo , Cadeia Alimentar , Compostos de Metilmercúrio/análise , Comportamento Predatório , Animais , Organismos Aquáticos/química , Organismos Aquáticos/classificação , Dieta/veterinária , Cação (Peixe)/metabolismo , Peixes/classificação , Contaminação de Alimentos/análise , Gadus morhua/metabolismo , Humanos , Alimentos Marinhos/análise , Água do Mar/química , Poluentes Químicos da Água/análise
3.
Front Robot AI ; 6: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501046

RESUMO

Sensor design for soft robots is a challenging problem because of the wide range of design parameters (e.g., geometry, material, actuation type, etc.) critical to their function. While conventional rigid sensors work effectively for soft robotics in specific situations, sensors that are directly integrated into the bodies of soft robots could help improve both their exteroceptive and interoceptive capabilities. To address this challenge, we designed sensors that can be co-fabricated with soft robot bodies using commercial 3D printers, without additional modification. We describe an approach to the design and fabrication of compliant, resistive soft sensors using a Connex3 Objet350 multimaterial printer and investigated an analytical comparison to sensors of similar geometries. The sensors consist of layers of commercial photopolymers with varying conductivities. We characterized the conductivity of TangoPlus, TangoBlackPlus, VeroClear, and Support705 materials under various conditions and demonstrate applications in which we can take advantage of these embedded sensors.

4.
Nanoscale ; 8(41): 17788-17793, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27714225

RESUMO

Herein we report a new design for acoustic nanoswimmers, making use of a nanoshell geometry that was synthesized using a sphere template process. Such shell-shaped nanomotors display highly efficient acoustic propulsion on the nanoscale by converting energy from the ambient acoustic field into motion. The propulsion mechanism of the nanoshell motors relies on acoustic streaming stress over the asymmetric surface to produce the driving force for motion. The shell-shaped nanomotors offer a high surface area to volume ratio, allow for efficient scalability and provide higher cargo towing capacity (in comparison to acoustically propelled nanowires). Furthermore, a detailed study of the parameters relevant to propulsion performance, including the material density, size and shape of the motors, reveals that the nanoshell motors exhibit a different propulsion behavior from that predicted by recent theoretical and experimental models for acoustically propelled nanomotors. Such findings indicate that further studies are needed to predict the behavior of acoustic nanomotors with different geometry designs. Practical applications of the new nanoshell motors, including "on-the-move" capture and the transport of multiple cargoes and internalization and movement inside live MCF-7 cancer cells, are demonstrated. These capabilities hold considerable promise for designing fuel-free nanoswimmers capable of performing complex tasks for diverse biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...