Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Osteopath Assoc ; 119(9): 622-630, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31449308

RESUMO

Modern human bipedality is unique and requires lumbar lordosis, whereas chimpanzees, our closest relatives, have short lumbar spines rendering them incapable of lordosis. To facilitate lordosis, humans have longer lumbar spines, greater lumbosacral angle, dorsally wedged lumbar vertebral bodies, and lumbar zygapophyseal joints with both increasingly coronal orientation and further caudal interfacet distances. These features limit modern lower lumbar spine and lumbosacral joint ailments, albeit imperfectly. The more coronal zygapophyseal orientation limits spondylolisthesis, while increasing interfacet distance may limit spondylolysis. Common back pain, particularly in people who are obese or pregnant, may result from increased lumbar lordosis, causing additional mass transfer through the zygapophyseal joints rather than vertebral bodies. Reduction in lumbar lordosis, such as in flatback syndrome from decreased lumbosacral angle, can also cause back pain. Human lumbar lordosis is necessary for placing the trunk atop the pelvis and presents a balancing act not required of our closest primate relatives.


Assuntos
Evolução Biológica , Lordose , Vértebras Lombares/anatomia & histologia , Primatas , Articulação Zigapofisária/anatomia & histologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...