Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(8): 3041-6, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287029

RESUMO

BRAF(V600E) is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting "active" protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf(V600E) with an IC(50) of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf(V600E) kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf(V600E)-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf(V600E)-positive cells. In B-Raf(V600E)-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf(V600E)-driven tumors.


Assuntos
Apoptose/efeitos dos fármacos , Indóis/química , Melanoma/tratamento farmacológico , Modelos Moleculares , Oncogenes/genética , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/química , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Escherichia coli , Humanos , Indóis/uso terapêutico , Concentração Inibidora 50 , Camundongos , Camundongos SCID , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/uso terapêutico
2.
Expert Opin Ther Targets ; 9(6): 1283-305, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16300476

RESUMO

Phosphodiesterase-4 (PDE4) is the predominant enzyme in some specific cell types that is responsible for the degradation of the second messenger, cAMP. Consequently, PDE4 plays a crucial role in cell signalling and, as such, it has been the target of clinical drug development of various indications, ranging from anti-inflammation to memory enhancement. In this review, the fundamental biological role of PDE4 in intracellular signalling, its tissue distribution and regulation are described. The historical development of various chemical classes of PDE4 inhibitors and the challenges that face these inhibitors as therapeutics are also discussed. Finally, recent advances in the structural biology of PDE4 and their complexes with various inhibitors, as well as its potential impact on the rational design of potent and selective PDE4 inhibitors, are presented.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/fisiologia , Sistemas de Liberação de Medicamentos/métodos , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , 3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Humanos , Líquido Intracelular/enzimologia , Especificidade de Órgãos/fisiologia , Inibidores de Fosfodiesterase/administração & dosagem , Inibidores de Fosfodiesterase/química , Relação Estrutura-Atividade
3.
Nat Biotechnol ; 23(2): 201-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15685167

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) comprise a large family of enzymes that regulate a variety of cellular processes. We describe a family of potent PDE4 inhibitors discovered using an efficient method for scaffold-based drug design. This method involves an iterative approach starting with low-affinity screening of compounds followed by high-throughput cocrystallography to reveal the molecular basis underlying the activity of the newly identified compounds. Through detailed structural analysis of the interaction of the initially discovered pyrazole carboxylic ester scaffold with PDE4D using X-ray crystallography, we identified three sites of chemical substitution and designed small selective libraries of scaffold derivatives with modifications at these sites. A 4,000-fold increase in the potency of this PDE4 inhibitor was achieved after only two rounds of chemical synthesis and the structural analysis of seven pyrazole derivatives bound to PDE4B or PDE4D, revealing the robustness of this approach for identifying new inhibitors that can be further developed into drug candidates.


Assuntos
Cristalografia/métodos , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Biblioteca de Peptídeos , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/química , Mapeamento de Interação de Proteínas/métodos , Sítios de Ligação , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Inibidores de Fosfodiesterase/análise , Diester Fosfórico Hidrolases/análise , Ligação Proteica
4.
Structure ; 12(12): 2233-47, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15576036

RESUMO

Phosphodiesterases (PDEs) comprise a large family of enzymes that catalyze the hydrolysis of cAMP or cGMP and are implicated in various diseases. We describe the high-resolution crystal structures of the catalytic domains of PDE4B, PDE4D, and PDE5A with ten different inhibitors, including the drug candidates cilomilast and roflumilast, for respiratory diseases. These cocrystal structures reveal a common scheme of inhibitor binding to the PDEs: (i) a hydrophobic clamp formed by highly conserved hydrophobic residues that sandwich the inhibitor in the active site; (ii) hydrogen bonding to an invariant glutamine that controls the orientation of inhibitor binding. A scaffold can be readily identified for any given inhibitor based on the formation of these two types of conserved interactions. These structural insights will enable the design of isoform-selective inhibitors with improved binding affinity and should facilitate the discovery of more potent and selective PDE inhibitors for the treatment of a variety of diseases.


Assuntos
Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Estrutura Terciária de Proteína
5.
Mol Cell ; 15(2): 279-86, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15260978

RESUMO

Phosphodiesterases (PDEs) comprise a family of enzymes that modulate the immune response, inflammation, and memory, among many other functions. There are three types of PDEs: cAMP-specific, cGMP-specific, and dual-specific. Here we describe the mechanism of nucleotide selectivity on the basis of high-resolution co-crystal structures of the cAMP-specific PDE4B and PDE4D with AMP, the cGMP-specific PDE5A with GMP, and the apo-structure of the dual-specific PDE1B. These structures show that an invariant glutamine functions as the key specificity determinant by a "glutamine switch" mechanism for recognizing the purine moiety in cAMP or cGMP. The surrounding residues anchor the glutamine residue in different orientations for cAMP and for cGMP. The PDE1B structure shows that in dual-specific PDEs a key histidine residue may enable the invariant glutamine to toggle between cAMP and cGMP. The structural understanding of nucleotide binding enables the design of new PDE inhibitors that may treat diseases in which cyclic nucleotides play a critical role.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-GMP Cíclico Fosfodiesterases/química , Glutamina/química , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Glutamina/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...