Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Ment Health ; 9(2): e34645, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34992051

RESUMO

BACKGROUND: The COVID-19 pandemic triggered a seismic shift in education to web-based learning. With nearly 20 million students enrolled in colleges across the United States, the long-simmering mental health crisis in college students was likely further exacerbated by the pandemic. OBJECTIVE: This study leveraged mobile health (mHealth) technology and sought to (1) characterize self-reported outcomes of physical, mental, and social health by COVID-19 status; (2) assess physical activity through consumer-grade wearable sensors (Fitbit); and (3) identify risk factors associated with COVID-19 positivity in a population of college students prior to release of the vaccine. METHODS: After completing a baseline assessment (ie, at Time 0 [T0]) of demographics, mental, and social health constructs through the Roadmap 2.0 app, participants were instructed to use the app freely, wear the Fitbit, and complete subsequent assessments at T1, T2, and T3, followed by a COVID-19 assessment of history and timing of COVID-19 testing and diagnosis (T4: ~14 days after T3). Continuous measures were described using mean (SD) values, while categorical measures were summarized as n (%) values. Formal comparisons were made on the basis of COVID-19 status. The multivariate model was determined by entering all statistically significant variables (P<.05) in univariable associations at once and then removing one variable at a time through backward selection until the optimal model was obtained. RESULTS: During the fall 2020 semester, 1997 participants consented, enrolled, and met criteria for data analyses. There was a high prevalence of anxiety, as assessed by the State Trait Anxiety Index, with moderate and severe levels in 465 (24%) and 970 (49%) students, respectively. Approximately one-third of students reported having a mental health disorder (n=656, 33%). The average daily steps recorded in this student population was approximately 6500 (mean 6474, SD 3371). Neither reported mental health nor step count were significant based on COVID-19 status (P=.52). Our analyses revealed significant associations of COVID-19 positivity with the use of marijuana and alcohol (P=.02 and P=.046, respectively) and with lower belief in public health measures (P=.003). In addition, graduate students were less likely and those with ≥20 roommates were more likely to report a COVID-19 diagnosis (P=.009). CONCLUSIONS: Mental health problems were common in this student population. Several factors, including substance use, were associated with the risk of COVID-19. These data highlight important areas for further attention, such as prioritizing innovative strategies that address health and well-being, considering the potential long-term effects of COVID-19 on college students. TRIAL REGISTRATION: ClinicalTrials.gov NCT04766788; https://clinicaltrials.gov/ct2/show/NCT04766788. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/29561.

2.
JMIR Res Protoc ; 10(5): e29562, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33945497

RESUMO

BACKGROUND: Health care workers (HCWs) have been working on the front lines of the COVID-19 pandemic with high risks of viral exposure, infection, and transmission. Standard COVID-19 testing is insufficient to protect HCWs from these risks and prevent the spread of disease. Continuous monitoring of physiological data with wearable sensors, self-monitoring of symptoms, and asymptomatic COVID-19 testing may aid in the early detection of COVID-19 in HCWs and may help reduce further transmission among HCWs, patients, and families. OBJECTIVE: By using wearable sensors, smartphone-based symptom logging, and biospecimens, this project aims to assist HCWs in self-monitoring COVID-19. METHODS: We conducted a prospective, longitudinal study of HCWs at a single institution. The study duration was 1 year, wherein participants were instructed on the continuous use of two wearable sensors (Fitbit Charge 3 smartwatch and TempTraq temperature patches) for up to 30 days. Participants consented to provide biospecimens (ie, nasal swabs, saliva swabs, and blood) for up to 1 year from study entry. Using a smartphone app called Roadmap 2.0, participants entered a daily mood score, submitted daily COVID-19 symptoms, and completed demographic and health-related quality of life surveys at study entry and 30 days later. Semistructured qualitative interviews were also conducted at the end of the 30-day period, following completion of daily mood and symptoms reporting as well as continuous wearable sensor use. RESULTS: A total of 226 HCWs were enrolled between April 28 and December 7, 2020. The last participant completed the 30-day study procedures on January 16, 2021. Data collection will continue through January 2023, and data analyses are ongoing. CONCLUSIONS: Using wearable sensors, smartphone-based symptom logging and survey completion, and biospecimen collections, this study will potentially provide data on the prevalence of COVID-19 infection among HCWs at a single institution. The study will also assess the feasibility of leveraging wearable sensors and self-monitoring of symptoms in an HCW population. TRIAL REGISTRATION: ClinicalTrials.gov NCT04756869; https://clinicaltrials.gov/ct2/show/NCT04756869. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/29562.

3.
Front Immunol ; 12: 653464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897700

RESUMO

Workplace exposure to respirable crystalline silica dust (cSiO2) has been etiologically linked to the development of lupus and other human autoimmune diseases. Lupus triggering can be recapitulated in female NZBWF1 mice by four weekly intranasal instillations with 1 mg cSiO2. This elicits inflammatory/autoimmune gene expression and ectopic lymphoid structure (ELS) development in the lung within 1 week, ultimately driving early onset of systemic autoimmunity and glomerulonephritis. Intriguingly, dietary supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA) found in fish oil, beginning 2 week prior to cSiO2 challenge, prevented inflammation and autoimmune flaring in this novel model. However, it is not yet known how ω-3 PUFA intervention influences established autoimmunity in this murine model of toxicant-triggered lupus. Here we tested the hypothesis that DHA intervention after cSiO2-initiated intrapulmonary autoimmunity will suppress lupus progression in the NZBWF1 mouse. Six-week old NZWBF1 female mice were fed purified isocaloric diet for 2 weeks and then intranasally instilled with 1 mg cSiO2 or saline vehicle weekly for 4 consecutive weeks. One week after the final instillation, which marks onset of ELS formation, mice were fed diets supplemented with 0, 4, or 10 g/kg DHA. One cohort of mice (n = 8/group) was terminated 13 weeks after the last cSiO2 instillation and assessed for autoimmune hallmarks. A second cohort of mice (n = 8/group) remained on experimental diets and was monitored for proteinuria and moribund criteria to ascertain progression of glomerulonephritis and survival, respectively. DHA consumption dose-dependently increased ω-3 PUFA content in the plasma, lung, and kidney at the expense of the ω-6 PUFA arachidonic acid. Dietary intervention with high but not low DHA after cSiO2 treatment suppressed or delayed: (i) recruitment of T cells and B cells to the lung, (ii) development of pulmonary ELS, (iii) elevation of a wide spectrum of plasma autoantibodies associated with lupus and other autoimmune diseases, (iv) initiation and progression of glomerulonephritis, and (v) onset of the moribund state. Taken together, these preclinical findings suggest that DHA supplementation at a human caloric equivalent of 5 g/d was an effective therapeutic regimen for slowing progression of established autoimmunity triggered by the environmental toxicant cSiO2.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Lúpus Eritematoso Sistêmico/dietoterapia , Doenças Profissionais/dietoterapia , Dióxido de Silício/toxicidade , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/imunologia , Dióxido de Silício/administração & dosagem
4.
Front Immunol ; 12: 635138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732257

RESUMO

Occupational exposure to crystalline silica (cSiO2) is etiologically associated with systemic lupus erythematosus (lupus) and other autoimmune diseases. cSiO2's autoimmune effects in humans can be mimicked chronically in female lupus-prone NZBWF1 mice following repeated exposure to the particle. However, the immediate and short-term effects of cSiO2 in this widely used model of autoimmune disease are not well-understood. In the present study, we tested the hypothesis that a single acute cSiO2 dose triggers early presentation of cellular, histopathological, transcriptomic, and protein biomarkers of inflammation and autoimmunity in lupus-prone mice. Eight-week old female NZBWF1 mice were intranasally instilled once with 2.5 mg cSiO2 or saline vehicle and necropsied at 1, 7, 14, 21, and 28 d post-instillation (PI). Analyses of bronchoalveolar lavage fluid (BALF) and lung tissue revealed that by 7 d PI, acute cSiO2 exposure persistently provoked: (i) robust recruitment of macrophages, neutrophils, and lymphocytes into the alveoli, (ii) cell death as reflected by increased protein, double-stranded DNA, and lactate dehydrogenase activity, (iii) elevated secretion of the cytokines IL-1α, IL-1ß, IL-18, TNF-α, IL-6, MCP-1, and B cell activation factor (BAFF), and (iv) upregulation of genes associated with chemokines, proinflammatory cytokines, lymphocyte activation, and type I interferon signaling. The appearance of these endpoints was subsequently followed by the emergence in the lung of organized CD3+ T cells (14 d PI) and CD45R+ B cells (21 d PI) that were indicative of ectopic lymphoid structure (ELS) development. Taken together, acute cSiO2 exposure triggered a rapid onset of autoimmune disease pathogenesis that was heralded in the lung by unresolved inflammation and cell death, proinflammatory cytokine production, chemokine-driven recruitment of leukocytes, an interferon response signature, B and T cell activation, and ELS neogenesis. This short-term murine model provides valuable new insight into potential early mechanisms of cSiO2-induced lupus flaring and, furthermore, offers a rapid venue for evaluating interventions against respirable particle-triggered inflammation and autoimmunity.


Assuntos
Autoimunidade , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Pneumonia/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Autoimunidade/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Quimiotaxia de Leucócito , Citocinas/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Pulmão/metabolismo , Pulmão/patologia , Lúpus Eritematoso Sistêmico/genética , Ativação Linfocitária , Camundongos Endogâmicos NZB , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/metabolismo , Dióxido de Silício , Linfócitos T/imunologia , Linfócitos T/metabolismo , Estruturas Linfoides Terciárias/metabolismo , Estruturas Linfoides Terciárias/patologia , Fatores de Tempo , Transcriptoma
5.
PLoS One ; 15(5): e0233183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413078

RESUMO

Lupus is a debilitating multi-organ autoimmune disease clinically typified by periods of flare and remission. Exposing lupus-prone female NZBWF1 mice to crystalline silica (cSiO2), a known human autoimmune trigger, mimics flaring by inducing interferon-related gene (IRG) expression, inflammation, ectopic lymphoid structure (ELS) development, and autoantibody production in the lung that collectively accelerate glomerulonephritis. cSiO2-triggered flaring in this model can be prevented by supplementing mouse diet with the ω-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). A limitation of previous studies was the use of purified diet that, although optimized for rodent health, does not reflect the high American intake of saturated fatty acid (SFA), ω-6 PUFAs, and total fat. To address this, we employed here a modified Total Western Diet (mTWD) emulating the 50th percentile U.S. macronutrient distribution to discern how DHA supplementation and/or SFA and ω-6 reduction influences cSiO2-triggered lupus flaring in female NZBWF1 mice. Six-week-old mice were fed isocaloric experimental diets for 2 wks, intranasally instilled with cSiO2 or saline vehicle weekly for 4 wks, and tissues assessed for lupus endpoints 11 wks following cSiO2 instillation. In mice fed basal mTWD, cSiO2 induced robust IRG expression, proinflammatory cytokine and chemokine elevation, leukocyte infiltration, ELS neogenesis, and autoantibody production in the lung, as well as early kidney nephritis onset compared to vehicle-treated mice fed mTWD. Consumption of mTWD containing DHA at the caloric equivalent to a human dose of 5 g/day dramatically suppressed induction of all lupus-associated endpoints. While decreasing SFA and ω-6 in mTWD modestly inhibited some disease markers, DHA addition to this diet was required for maximal protection against lupus development. Taken together, DHA supplementation at a translationally relevant dose was highly effective in preventing cSiO2-triggered lupus flaring in NZBWF1 mice, even against the background of a typical Western diet.


Assuntos
Dieta Ocidental/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Lúpus Eritematoso Sistêmico/dietoterapia , Dióxido de Silício/toxicidade , Animais , Linfócitos B/imunologia , Citocinas/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Glomerulonefrite/dietoterapia , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Inflamação/imunologia , Interferon gama/metabolismo , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Camundongos , Linfócitos T/imunologia
6.
Front Immunol ; 10: 2130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616405

RESUMO

Occupational exposure to respirable crystalline silica (cSiO2) has been etiologically linked to human autoimmunity. Intranasal instillation with cSiO2 triggers profuse inflammation in the lung and onset of autoimmunity in lupus-prone mice; however, dietary supplementation with the omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) abrogates these responses. Inflammasome activation, IL-1 cytokine release, and death in alveolar macrophages following cSiO2 exposure are early and critical events that likely contribute to triggering premature autoimmune pathogenesis by this particle. Here we tested the hypothesis that DHA suppresses cSiO2-induced NLRP3 inflammasome activation, IL-1 cytokine release, and cell death in the macrophage. The model used was the murine macrophage RAW 264.7 cell line stably transfected with the inflammasome adapter protein ASC (RAW-ASC). Following priming with LPS, both the canonical activator nigericin and cSiO2 elicited robust inflammasome activation in RAW-ASC cells, as reflected by IL-1ß release and caspase-1 activation. These responses were greatly diminished or absent in wild-type RAW cells. In contrast to IL-1ß, cSiO2 induced IL-1α release in both RAW-ASC and to a lesser extent in RAW-WT cells after LPS priming. cSiO2-driven effects in RAW-ASC cells were confirmed in bone-marrow derived macrophages. Pre-incubating RAW-ASC cells with 10 and 25 µM DHA for 24 h enriched this fatty acid in the phospholipids by 15- and 25-fold, respectively, at the expense of oleic acid. DHA pre-incubation suppressed inflammasome activation and release of IL-1ß and IL-1α by nigericin, cSiO2, and two other crystals - monosodium urate and alum. DHA's suppressive effects were linked to inhibition of LPS-induced Nlrp3, Il1b, and Il1a transcription, potentially through the activation of PPARγ. Finally, nigericin-induced death was inflammasome-dependent, indicative of pyroptosis, and could be inhibited by DHA pretreatment. In contrast, cSiO2-induced death was inflammasome-independent and not inhibited by DHA. Taken together, these findings indicate that DHA suppresses cSiO2-induced inflammasome activation and IL-1 cytokine release in macrophages by acting at the level of priming, but was not protective against cSiO2-induced cell death.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Inflamassomos/efeitos dos fármacos , Interleucina-1/metabolismo , Dióxido de Silício/farmacologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nigericina/farmacologia , Células RAW 264.7
7.
Front Immunol ; 10: 632, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984195

RESUMO

Crystalline silica (cSiO2) is a widely recognized environmental trigger of autoimmune disease. In the lupus-prone female NZBWF1 mouse, airway exposure to cSiO2 triggers pulmonary ectopic lymphoid neogenesis, systemic autoantibody elevation, and glomerulonephritis. Here we tested the hypothesis that upregulation of adaptive immune function genes in the lung precedes cSiO2-triggering of autoimmune disease in this model. The study include three groups of mice, as follows: (1) necropsied 1 d after a single intranasal instillation of 1 mg cSiO2 or vehicle, (2) necropsied 1 d after four weekly single instillations of 1 mg cSiO2 or vehicle, or (3) necropsied 1, 5, 9, or 13 weeks after four weekly single instillations of 1 mg cSiO2 or vehicle. NanoString nCounter analysis revealed modest transcriptional changes associated with innate and adaptive immune response as early as 1 d after a single cSiO2 instillation. These responses were greatly expanded after four weekly cSiO2 instillations. Concurrent with ectopic lymphoid neogenesis, dramatic increases in mRNAs associated with chemokine release, cytokine production, sustained interferon activity, complement activation, and adhesion molecules were observed. As disease progressed, expression of these genes persisted and was further amplified. Consistent with autoimmune pathogenesis, the time between 5 and 9 weeks post-instillation reflected an important transition period where considerable immune gene upregulation in the lung was observed. Upon termination of the chronic study (13 weeks), cSiO2-induced changes in transcriptome signatures were similarly robust in kidney as compared to the lung, but more modest in spleen. Transcriptomic signatures in lung and kidney were indicative of infiltration and/or expansion of neutrophils, macrophages, dendritic cells, B cells, and T cells that corresponded with accelerated autoimmune pathogenesis. Taken together, airway exposure to cSiO2 elicited aberrant mRNA signatures for both innate and adaptive immunity that were consistent with establishment of the lung as the central autoimmune nexus for launching systemic autoimmunity and ultimately, kidney injury.


Assuntos
Pulmão , Lúpus Eritematoso Sistêmico , Dióxido de Silício/toxicidade , Transcriptoma , Animais , Modelos Animais de Doenças , Feminino , Pulmão/imunologia , Pulmão/patologia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Transcriptoma/efeitos dos fármacos , Transcriptoma/imunologia
8.
Front Immunol ; 10: 2851, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921124

RESUMO

Exposure of lupus-prone female NZBWF1 mice to respirable crystalline silica (cSiO2), a known human autoimmune trigger, initiates loss of tolerance, rapid progression of autoimmunity, and early onset of glomerulonephritis. We have previously demonstrated that dietary supplementation with the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) suppresses autoimmune pathogenesis and nephritis in this unique model of lupus flaring. In this report, we utilized tissues from prior studies to test the hypothesis that DHA consumption interferes with upregulation of critical genes associated with cSiO2-triggered murine lupus. A NanoString nCounter platform targeting 770 immune-related genes was used to assess the effects cSiO2 on mRNA signatures over time in female NZBWF1 mice consuming control (CON) diets compared to mice fed diets containing DHA at an amount calorically equivalent to human consumption of 2 g per day (DHA low) or 5 g per day (DHA high). Experimental groups of mice were sacrificed: (1) 1 d after a single intranasal instillation of 1 mg cSiO2 or vehicle, (2) 1 d after four weekly single instillations of vehicle or 1 mg cSiO2, and (3) 1, 5, 9, and 13 weeks after four weekly single instillations of vehicle or 1 mg cSiO2. Genes associated with inflammation as well as innate and adaptive immunity were markedly upregulated in lungs of CON-fed mice 1 d after four weekly cSiO2 doses but were significantly suppressed in mice fed DHA high diets. Importantly, mRNA signatures in lungs of cSiO2-treated CON-fed mice over 13 weeks reflected progressive amplification of interferon (IFN)- and chemokine-related gene pathways. While these responses in the DHA low group were suppressed primarily at week 5, significant downregulation was observed at weeks 1, 5, 9, and 13 in mice fed the DHA high diet. At week 13, cSiO2 treatment of CON-fed mice affected 214 genes in kidney tissue associated with inflammation, innate/adaptive immunity, IFN, chemokines, and antigen processing, mostly by upregulation; however, feeding DHA dose-dependently suppressed these responses. Taken together, dietary DHA intake in lupus-prone mice impeded cSiO2-triggered mRNA signatures known to be involved in ectopic lymphoid tissue neogenesis, systemic autoimmunity, and glomerulonephritis.


Assuntos
Quimiocinas/imunologia , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interferons/imunologia , Lúpus Eritematoso Sistêmico , Dióxido de Silício/toxicidade , Animais , Feminino , Regulação da Expressão Gênica/imunologia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos
9.
Front Immunol ; 9: 2002, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258439

RESUMO

Ectopic lymphoid structures (ELS) consist of B-cell and T-cell aggregates that are initiated de novo in inflamed tissues outside of secondary lymphoid organs. When organized within follicular dendritic cell (FDC) networks, ELS contain functional germinal centers that can yield autoantibody-secreting plasma cells and promote autoimmune disease. Intranasal instillation of lupus-prone mice with crystalline silica (cSiO2), a respirable particle linked to human lupus, triggers ELS formation in the lung, systemic autoantibodies, and early onset of glomerulonephritis. Here we tested the hypothesis that consumption of docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid with anti-inflammatory properties, influences the temporal profile of cSiO2-induced pulmonary ectopic germinal center formation and development of glomerulonephritis. Female NZBWF1 mice (6-wk old) were fed purified isocaloric diets supplemented with 0, 4, or 10 g/kg DHA - calorically equivalent to 0, 2, or 5 g DHA per day consumption by humans, respectively. Beginning at age 8 wk, mice were intranasally instilled with 1 mg cSiO2, or saline vehicle alone, once per wk, for 4 wk. Cohorts were sacrificed 1, 5, 9, or 13 wk post-instillation (PI) of the last cSiO2 dose, and lung and kidney lesions were investigated by histopathology. Tissue fatty acid analyses confirmed uniform dose-dependent DHA incorporation across all cohorts. As early as 1 wk PI, inflammation comprising of B (CD45R+) and T (CD3+) cell accumulation was observed in lungs of cSiO2-treated mice compared to vehicle controls; these responses intensified over time. Marked follicular dendritic cell (FDC; CD21+/CD35+) networking appeared at 9 and 13 wk PI. IgG+ plasma cells suggestive of mature germinal centers were evident at 13 wk. DHA supplementation dramatically suppressed cSiO2-triggered B-cell, T-cell, FDC, and IgG+ plasma cell appearance in the lungs as well as anti-dsDNA IgG in bronchial lavage fluid and plasma over the course of the experiment. cSiO2 induced glomerulonephritis with concomitant B-cell accumulation in the renal cortex at 13 wk PI but this response was abrogated by DHA feeding. Taken together, realistic dietary DHA supplementation prevented initiation and/or progression of ectopic lymphoid neogenesis, germinal center development, systemic autoantibody elevation, and resultant glomerulonephritis in this unique preclinical model of environment-triggered lupus.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Centro Germinativo , Glomerulonefrite , Pulmão , Lúpus Eritematoso Sistêmico , Dióxido de Silício/toxicidade , Animais , Feminino , Centro Germinativo/imunologia , Centro Germinativo/patologia , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Glomerulonefrite/prevenção & controle , Pulmão/imunologia , Pulmão/patologia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Lúpus Eritematoso Sistêmico/prevenção & controle , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...