Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Sci ; 23(4): e12909, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31599470

RESUMO

There is evidence that spatial thinking is malleable, and that spatial and mathematical skills are associated (Mix et al. [2016] Journal of Experimental Psychology: General, 145, 1206; Mix et al. [2017] Journal of Cognition and Development, 18, 465; Uttal et al. [2013] Psychological Bulletin, 139, 352). However, few studies have investigated transfer of spatial training gains to mathematics outcomes in children, and no known studies have compared different modes of spatial instruction (explicit vs. implicit instruction). Based on a sample of 250 participants, this study compared the effectiveness of explicit and implicit spatial instruction in eliciting near transfer (to the specific spatial skills trained), intermediate transfer (to untrained spatial skills) and far transfer (to mathematics domains) at age 8. Spatial scaling and mental rotation skills were chosen as training targets as previous studies have found, and proposed explanations for, associations between these skills and mathematics in children of this age (Journal of Experimental Psychology: General, 145, 2016 and 1206). In this study, spatial training led to near, intermediate and far transfer of gains. Mental visualization and proportional reasoning were proposed to explain far transfer from mental rotation and spatial scaling skills respectively. For most outcomes, except for geometry, there was no difference in the effectiveness of implicit (practice with feedback) compared to explicit instruction (instructional videos). From a theoretical perspective, the study identified a specific causal effect of spatial skills on mathematics skills in children. Practically, the results also highlight the potential of instructional videos as a method of introducing spatial thinking into the classroom.


Assuntos
Matemática , Resolução de Problemas , Percepção Espacial , Criança , Cognição , Feminino , Humanos , Masculino , Matemática/educação
2.
Dev Sci ; 22(4): e12786, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30548725

RESUMO

Spatial thinking is an important predictor of mathematics. However, existing data do not determine whether all spatial sub-domains are equally important for mathematics outcomes nor whether mathematics-spatial associations vary through development. This study addresses these questions by exploring the developmental relations between mathematics and spatial skills in children aged 6-10 years (N = 155). We extend previous findings by assessing and comparing performance across Uttal et al.'s (2013), four spatial sub-domains. Overall spatial skills explained 5%-14% of the variation across three mathematics performance measures (standardized mathematics skills, approximate number sense and number line estimation skills), beyond other known predictors of mathematics including vocabulary and gender. Spatial scaling (extrinsic-static sub-domain) was a significant predictor of all mathematics outcomes, across all ages, highlighting its importance for mathematics in middle childhood. Other spatial sub-domains were differentially associated with mathematics in a task- and age-dependent manner. Mental rotation (intrinsic-dynamic skills) was a significant predictor of mathematics at 6 and 7 years only which suggests that at approximately 8 years of age there is a transition period regarding the spatial skills that are important for mathematics. Taken together, the results support the investigation of spatial training, particularly targeting spatial scaling, as a means of improving both spatial and mathematical thinking.


Assuntos
Cognição/fisiologia , Matemática , Navegação Espacial/fisiologia , Aptidão , Criança , Feminino , Humanos , Masculino , Instituições Acadêmicas , Vocabulário
3.
Br J Educ Psychol ; 88(4): 675-697, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29359476

RESUMO

BACKGROUND: Prior longitudinal and correlational research with adults and adolescents indicates that spatial ability is a predictor of science learning and achievement. However, there is little research to date with primary-school aged children that addresses this relationship. Understanding this association has the potential to inform curriculum design and support the development of early interventions. AIMS: This study examined the relationship between primary-school children's spatial skills and their science achievement. METHOD: Children aged 7-11 years (N = 123) completed a battery of five spatial tasks, based on a model of spatial ability in which skills fall along two dimensions: intrinsic-extrinsic; static-dynamic. Participants also completed a curriculum-based science assessment. RESULTS: Controlling for verbal ability and age, mental folding (intrinsic-dynamic spatial ability), and spatial scaling (extrinsic-static spatial ability) each emerged as unique predictors of overall science scores, with mental folding a stronger predictor than spatial scaling. These spatial skills combined accounted for 8% of the variance in science scores. When considered by scientific discipline, mental folding uniquely predicted both physics and biology scores, and spatial scaling accounted for additional variance in biology and variance in chemistry scores. The children's embedded figures task (intrinsic-static spatial ability) only accounted for variance in chemistry scores. The patterns of association were consistent across the age range. CONCLUSION: Spatial skills, particularly mental folding, spatial scaling, and disembedding, are predictive of 7- to 11-year-olds' science achievement. These skills make a similar contribution to performance for each age group.


Assuntos
Sucesso Acadêmico , Desenvolvimento Infantil/fisiologia , Ciência/educação , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia , Criança , Feminino , Humanos , Masculino , Instituições Acadêmicas , Estudantes
4.
J Exp Child Psychol ; 163: 107-125, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28753435

RESUMO

Strong spatial skills are associated with success in science, technology, engineering, and mathematics (STEM) domains. Although there is convincing evidence that spatial skills are a reliable predictor of mathematical achievement in preschool children and in university students, there is a lack of research exploring associations between spatial and mathematics achievement during the primary school years. To address this question, this study explored associations between mathematics and spatial skills in children aged 5 and 7years. The study sample included 12,099 children who participated in both Wave 3 (mean age=5; 02 [years; months]) and Wave 4 (mean age=7; 03) of the Millennium Cohort Study. Measures included a standardised assessment of mathematics and the Pattern Construction subscale of the British Ability Scales II to assess intrinsic-dynamic spatial skills. Spatial skills at 5 and 7years of age explained a significant 8.8% of the variation in mathematics achievement at 7years, above that explained by other predictors of mathematics, including gender, socioeconomic status, ethnicity, and language skills. This percentage increased to 22.6% without adjustment for language skills. This study expands previous findings by using a large-scale longitudinal sample of primary school children, a population that has been largely omitted from previous research exploring associations between spatial ability and mathematics achievement. The finding that early and concurrent spatial skills contribute to mathematics achievement at 7years of age highlights the potential of spatial skills as a novel target in the design of mathematics interventions for children in this age range.


Assuntos
Logro , Matemática , Navegação Espacial , Aptidão , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Idioma , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...