Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mass Spectrom ; 49(2): 168-77, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24677307

RESUMO

The correlation of anion structure with the fragmentation behavior of deprotonated nitrobenzenesulfonylamino acids was investigated using tandem mass spectrometry, isotopic labeling and computational methods. Four distinct fragmentation pathways resulting from the collision-induced dissociation (CID) of deprotonated 2-nitrobenzenesulfonylglycine (NsGly) were characterized. The unusual loss of the aryl nitro substituent as HONO was the lowest energy process. Subsequent successive losses of CO, HCN and SO2 indicated that an ortho cyclization reaction had accompanied loss of HONO. Other pathways involving rearrangement of the ionized sulfonamide group, dual bond cleavage and intramolecular nucleophilic displacement were proposed to account for the formation of phenoxide, arylsulfinate and arylsulfonamide product ions at higher collision energies. The four distinct fragmentation pathways were consistent with precursor-product relationships established by CID experiments, isotopic labeling results and the formation of analogous product ions from 2,4-dinitrobenzenesulfonylglycine and the Ns derivatives of alanine and 2-aminoisobutyric acid. The computations confirmed a low barrier for ortho cyclization with loss of HONO and feasible energetics for each reaction step in the four pathways. Computations also indicated that three of the fragmentation pathways started from NsGly ionized at the carboxyl group. Overall, the pathways identified for the fragmentation of the NsGly anion differed from processes reported for anions containing a single functional group, demonstrating the importance of functional group interactions in the fragmentation pathways of multifunctional anions.


Assuntos
Ânions/química , Glicina/análogos & derivados , Glicina/química , Nitrobenzenos/química , Espectrometria de Massas em Tandem/métodos , Modelos Moleculares
2.
J Am Soc Mass Spectrom ; 25(3): 388-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24408178

RESUMO

Tandem mass spectrometry (MS/MS) confirmed decarboxylation as the major collision-induced dissociation (CID) pathway of deprotonated hydrocinnamic acid (C6H5CH2CH2CO2H), N-phenylglycine (C6H5NHCH2CO2H) and 3-pyridin-2-ylpropanoic acid (C5H4NCH2CH2CO2H). The structure and stability of isomeric precursor and product anions were examined using density functional theory and ab initio methods. Geometry optimizations and frequency calculations were performed using the B3LYP/6-31++G(2d,p) level of theory and basis set with additional single point energies calculated at the MP2/6-311++G(2d,p) level. The formation of a delocalized product anion by carboxyl group-mediated migration of a benzylic proton to the ortho position of the ring and subsequent Cα-CO2(-) bond cleavage was energetically more favorable than direct decarboxylation and rearrangements of anions within ion-neutral complexes with carbon dioxide. The energy barrier for rearrangement of the delocalized product anion to the more stable benzylic anion was lowest in the fragmentation pathway of 3-pyridin-2-ylpropanoate. More energetically demanding fragmentation processes were indicated by the formation of other product anions at higher collision energy. Computations supported the feasibility of the formation of hydroxycarbonyl, styrene, and phenide ions from the benzylic anion of hydrocinnamate and the corresponding product anions from the nitrogen-containing analogues. The loss of dihydrogen from decarboxylated 3-pyridin-2-ylpropanoate was characterized computationally as hydride abstraction of an aryl proton. Overall, the results highlight the importance of exploring rearrangements in the fragmentation pathways of ions formed by electrospray ionization (ESI).

3.
Phys Chem Chem Phys ; 15(20): 7638-47, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23591590

RESUMO

Complexes of mono-, bi- (RB), and tridentate (RT) receptors with a range of anions (Cl(-), Br(-), I(-), NO3(-), H2PO4(-), HSO4(-), and tosylate (TsO(-))) have been studied in the gas phase by both experimental and theoretical methods. Temperature dependent blackbody infrared radiative dissociation (BIRD) experiments were performed on complexes of C8F17I with Br(-) and I(-), RB with I(-), NO3(-), HSO4(-), H2PO4(-), and TsO(-), and RT with I(-), HSO4(-) and TsO(-) and the observed Arrhenius parameters are reported here. Master equation modeling of the BIRD kinetics data was carried out to determine threshold dissociation energies. Geometry optimizations and thermochemistry calculations were performed using the B3LYP/6-31+G(d,p) level of theory. Additional single point energies were calculated using MP2/6-311++G(2d,p). Results were examined in terms of the binding order of various anions as well as the added binding strength from additional halogen bonding (XB) interactions. The relative binding energies of ions were generally consistent with the ordering previously reported from solution phase experiments; however, the relatively strong binding of H2PO4(-) to the bidentate receptor contrasted the solution phase observation of oxoanions having weaker interactions when compared to halides. An increase in the energy required to remove the same anion from the tridentate receptor when compared to the bidentate and monodentate receptors is explained as being due to the increase in halogen bonding interactions. The possibility of mixed halogen and hydrogen bonded complexes were considered.


Assuntos
Halogênios/química , Teoria Quântica , Ânions/química , Gases/química , Cinética , Estrutura Molecular , Temperatura
4.
Phys Chem Chem Phys ; 14(10): 3304-15, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22139344

RESUMO

Clusters of uracil (U) about a calcium dication, U(n)Ca(2+) (n = 14-4), have been studied in the gas phase by both experimental and theoretical methods. Temperature dependent blackbody infrared radiative dissociation (BIRD) experiments were performed on U(n)Ca(2+) clusters with n = 14-5 and the observed Arrhenius parameters are reported here. Master equation modeling of the BIRD kinetics data was carried out to determine threshold dissociation energies. Initial geometry calculations were performed using the B3LYP density functional and 3-21G(d) basis set. A sample of ten conformations per cluster was obtained through a simulated annealing study. These structures were optimized using B3LYP/6-31G(d) level of theory. Fragment-based hybrid many body interaction (HMBI) MP2/6-311++G(2df,2p)/Amoeba calculations were performed on representative conformations to determine theoretical binding energies. Results were examined in relation to cluster size (n). A significant increase in the energy required to remove uracil from U(6)Ca(2+) when compared to larger clusters supports previous reports that the calcium ion is coordinated by six uracil molecules in the formation of an inner shell. For clusters larger than n = 6, an odd-even alternation in threshold dissociation energies was observed, suggesting that the outer shell uracil molecules bind as dimers to the inner core. Proposed binding schemes are presented. Multiple structures of U(5)Ca(2+) are suggested as being present in the gas phase where the fifth uracil may be either part of the first or second solvation shell.


Assuntos
Cálcio/química , Teoria Quântica , Uracila/química , Gases/química , Modelos Moleculares , Estrutura Molecular
5.
J Phys Chem A ; 114(10): 3449-56, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20163169

RESUMO

Complexes between adenine and the alkali metal ions Li(+), Na(+), K(+), and Cs(+) have been investigated by infrared multiple photon dissociation (IRMPD) spectroscopy between 2800 and 3900 cm(-1), as have some singly hydrated complexes. The IRMPD spectra clearly show the N-H stretching and the NH(2) symmetric and asymmetric stretching vibrations of adenine; and for the solvated ions, the O-H stretching vibrations are observed. These experimental spectra were compared with those for a variety of possible structures, including both A9 (A9 refers to the tautomer where hydrogen is on the nitrogen in position 9 of adenine, see Scheme 1) and A7 adenine tautomers, computed using B3-LYP/6-31+G(d,p). By comparing the experimental and the simulated spectra it is possible to rule out various structures and to further assign structures to the species probed in these experiments. Single-point calculations on the B3-LYP/6-31+G(d,p) geometries have been performed at MP2/6-311++G(2d, p) to obtain good estimates of the relative thermochemistries for the different structures. In all cases the computed IR spectrum for the lowest energy structure is consistent with the experimental IRMPD spectrum, but in some cases structural assignment cannot be confirmed based solely upon comparison with the experimental spectra so computed thermochemistries can be used to rule out high-energy structures. On the basis of the IRMPD spectra and the energy calculations, all adenine-M(+) and adenine-M(+)-H(2)O are concluded to be composed of the A7 tautomer of adenine, which is bound to the cations in a bidentate fashion through N3 and N9 (see Scheme 1 for numbering convention). For the hydrated ions water binds directly to the metal ion through oxygen, as would be expected since the metal contains most positive charge density. For the hydrated lithium cation-bound adenine dimer, the water molecule is concluded to be hydrogen bonded to a free basic site of one of the adenine monomers, which is also bound to the lithium cation. Experimental and theoretical results on adenine-Li(+)-H(2)O suggest that the electrosprayed adenine-Li(+) resembles the lowest-energy solution phase ion rather than the lowest-energy gas-phase ion, which is the imine form.


Assuntos
Adenina/química , Elétrons , Metais Alcalinos/química , Compostos Organometálicos/química , Gases/química , Modelos Moleculares , Conformação Molecular , Fótons , Teoria Quântica , Espectrofotometria Infravermelho
6.
J Phys Chem A ; 113(28): 8099-107, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19548662

RESUMO

The infrared multiple photon dissociation (IRMPD) spectrum of electrosprayed adenine proton-bound dimers were recorded in the gas-phase inside the cell of a Fourier transform ion cyclotron resonance spectrometer coupled to a tunable optical parametric oscillator/amplifier infrared laser. While gas-phase B3LYP/6-31+G(d,p) calculations indicate that the four lowest isomers are essentially isoenergetic, comparisons of the experimental and predicted IR spectra suggest that only two of the four isomers are observed in the experiment. However, computed solvation effects, as modeled using both a polarizable continuum model and microsolvation with five explicit water molecules, preferentially stabilize these two observed isomers, consistent with the interpretation of the IRMPD spectra. This work shows that for these small species the solvent-phase structure is preserved. It also demonstrates the potential danger of using gas-phase calculations to predict the structures of gaseous ions born in solution, such as those from an electrospray source.


Assuntos
Adenina/química , Prótons , Simulação por Computador , Dimerização , Gases/química , Modelos Moleculares , Estrutura Molecular , Transição de Fase , Solventes/química , Espectrofotometria Infravermelho , Termodinâmica , Água/química
7.
J Phys Chem A ; 113(11): 2544-50, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19281148

RESUMO

Fourier Transform infrared spectroscopy and Raman spectroscopy have been used to investigate hydrogen bonding of methanol in different solvents with an aim to explore potential experimental evidence for improper hydrogen bonding involving the methyl group of methanol as suggested by various computational studies. Pure methanol and solutions of methanol in water, acetonitrile, carbon tetrachloride, deuterium oxide, and deuterated acetonitrile have been studied over a range of concentrations. Wavenumber shifts of the CH stretching vibrations were examined to determine if the CH from methanol participates in hydrogen bonding. New concepts of the vibrational wavenumber and integrated intensity at infinite dilution are proposed and given the respective symbols nu(CH(o)) and C(j,CH)*(o). Using the results obtained for methanol in carbon tetrachloride as a reference, shifts in nu(CH(o)) of methanol to higher wavenumbers (blue shifts) were observed in each of the other solvents studied, with the shifts being greatest for the methanol-water interactions. The shifts in vibrational wavenumber suggest possible improper hydrogen bonding, although at this stage a definitive conclusion is not possible. The C(j,CH)*(o) results show that there is no distinguishable change in the methanol CH stretch integrated intensity in carbon tetrachloride and acetonitrile, while there is a significant decrease in the methanol CH stretch integrated intensity in the water solutions.

8.
J Phys Chem A ; 113(5): 824-32, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19175333

RESUMO

The interaction of lithium ions with two pyrimidine nucleobases, thymine and uracil, as well as the solvation of various complexes by one and two water molecules, has been studied in the gas phase. IRMPD spectra are reported for each of B-Li(+)-(H(2)O)(n) (n = 1-2) and B(2)-Li-(H(2)O)(m) (m = 0-1) for B = thymine, uracil over the 2500-4000 cm(-1) region. Calculations were performed using the B3LYP density functional in conjunction with the 6-31+G(d,p) basis set to model the vibrational spectra as well as MP2/6-311++G(2d,p) theory to model the thermochemistry of potential structures. Experimental and theoretical results were used in combination to determine structures of each complex, which are reported here. The lithium cation in all complexes was found to bond to the O4 oxygen in both thymine and uracil, and the first two water molecules of solvation were found to bond to Li(+). The experimental spectra obtained for BLi(+)(H(2)O)(n) (n = 1-2) and B(2)Li(+) for thymine and uracil clearly resemble one another, suggesting similar structural features in terms of bonding between the base and Li(+), as well as for solvation. This was confirmed through theoretical work. The addition of water to the lithium ion-bound DNA base dimers has been shown to induce a significant change in structure of the dimer to a hydrogen-bonded system similar to base pairing in the Watson-Crick model of DNA.


Assuntos
Lítio/química , Espectrofotometria Infravermelho/métodos , Timina/química , Uracila/química , Ligação de Hidrogênio , Estrutura Molecular , Termodinâmica , Água/química
9.
J Phys Chem A ; 112(41): 10220-5, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18816028

RESUMO

The proton- and the sodium ion-bound glycine homodimers are studied by a combination of infrared multiple photon dissociation (IRMPD) spectroscopy in the N-H and O-H stretching region and electronic structure calculations. For the proton-bound glycine dimer, in the region above 3100 cm (-1), the present spectrum agrees well with one recorded previously. The present work also reveals a weak, broad absorption spanning the region from 2650 to 3300 cm (-1). This feature is assigned to the strongly hydrogen-bonded and anharmonic N-H and O-H stretching modes. As well, the shared proton stretch is observed at 2440 cm (-1). The IRMPD spectra for the proton-bound glycine dimer confirms that the lowest energy structure is an ion-dipole complex between N-protonated glycine and the carboxyl group of the second glycine. This spectrum also helps to eliminate the existence of any of the higher-energy structures considered. The IRMPD spectrum for the sodium ion-bound dimer is a much simpler spectrum consisting of three bands assigned to the O-H stretch and the asymmetric and symmetric NH 2 stretching modes. The positions of these bands are very similar to those observed for the proton-bound glycine dimer. Numerous structures were considered and the experimental spectrum agrees with the B3LYP/6-31+G(d,p) predicted spectrum for the lowest energy structure, two bidentate glycine molecules bound to Na (+). Though some of the structures cannot be completely ruled out by comparing the experimental and theoretical spectra, they are energetically disfavored by at least 20 kJ mol (-1).


Assuntos
Glicina/química , Fótons , Sódio/química , Simulação por Computador , Dimerização , Ligação de Hidrogênio , Íons/química , Modelos Químicos , Concentração Osmolar , Espectrofotometria Infravermelho/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-17804287

RESUMO

The vibrational properties of benzene have long been a topic of interest. A recent comparison presented in the literature of the liquid and gas intensities at 25 degrees C have revealed some intriguing results regarding how the interaction between the hydrogens and the neighbouring pi-clouds in the liquid affect the vibrational intensities. To gain insight into the effect of temperature on the optical properties of liquid benzene and these interactions, the optical constants of liquid benzene have been determined through transmission measurements between 7,400 and 800 cm(-1). The spectra were measured in cells with KBr windows over a path length range of 15-1,000 microm and were collected over a temperature range of 30-50 degrees C in 5 degrees C increments. Variations in the imaginary molar polarizability spectra are examined and compared to a similar study of liquid toluene completed several years ago.


Assuntos
Benzeno/química , Raios Infravermelhos , Óptica e Fotônica , Temperatura , Fenômenos Eletromagnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...