Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(12): e53, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38813827

RESUMO

Advances in molecular profiling have facilitated generation of large multi-modal datasets that can potentially reveal critical axes of biological variation underlying complex diseases. Distilling biological meaning, however, requires computational strategies that can perform mosaic integration across diverse cohorts and datatypes. Here, we present mosaicMPI, a framework for discovery of low to high-resolution molecular programs representing both cell types and states, and integration within and across datasets into a network representing biological themes. Using existing datasets in glioblastoma, we demonstrate that this approach robustly integrates single cell and bulk programs across multiple platforms. Clinical and molecular annotations from cohorts are statistically propagated onto this network of programs, yielding a richly characterized landscape of biological themes. This enables deep understanding of individual tumor samples, systematic exploration of relationships between modalities, and generation of a reference map onto which new datasets can rapidly be mapped. mosaicMPI is available at https://github.com/MorrissyLab/mosaicMPI.


Assuntos
Glioblastoma , Software , Humanos , Glioblastoma/genética , Genômica/métodos , Análise de Célula Única/métodos , Biologia Computacional/métodos
2.
Sci Adv ; 7(42): eabg6045, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34644115

RESUMO

Single-cell epigenomic assays have tremendous potential to illuminate mechanisms of transcriptional control in functionally diverse cancer cell populations. However, application of these techniques to clinical tumor specimens has been hampered by the current inability to distinguish malignant from nonmalignant cells, which potently confounds data analysis and interpretation. Here, we describe Copy-scAT, an R package that uses single-cell epigenomic data to infer copy number variants (CNVs) that define cancer cells. Copy-scAT enables studies of subclonal chromatin dynamics in complex tumors like glioblastoma. By deploying Copy-scAT, we uncovered potent influences of genetics on chromatin accessibility profiles in individual subclones. Consequently, some genetic subclones were predisposed to acquire stem-like or more differentiated molecular phenotypes, reminiscent of developmental paradigms. Copy-scAT is ideal for studies of the relationships between genetics and epigenetics in malignancies with high levels of intratumoral heterogeneity and to investigate how cancer cells interface with their microenvironment.

3.
Genes Chromosomes Cancer ; 60(8): 531-545, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33749950

RESUMO

Advanced cancers frequently show histologic and molecular intratumoral heterogeneity. Therefore, we comprehensively characterized advanced, metastatic, radioiodine-resistant (RAIR) thyroid carcinomas at the molecular level in the context of histologic heterogeneity with the aim to identify potentially actionable mutations that may guide the use of specific tyrosine kinase inhibitor (TKI) treatment. Whole exome sequencing (WES) was applied to 29 macrodissected tissue samples of histologically heterogeneous and homogeneous areas, lymph node and lung metastases from six clinically and histologically well-characterized metastatic RAIR thyroid cancer patients with structural incomplete response to treatment. WES data were analyzed to identify potential driver mutations in oncogenic pathways, copy number alterations, microsatellite instability, mutant-allele tumor heterogeneity, and the relevance of histologic heterogeneity to molecular profiling. In addition to known driver mutations in BRAF, NRAS, EIF1AX, NCOA4-RET, and TERT, further potentially actionable drivers were identified in AKT1, ATM, E2F1, HTR2A, and MLH3. The analysis of the evolutionary history of the mutations and the reconstruction of the molecular phylogeny of the cancers show a remarkable association between histologic and molecular heterogeneity. A comprehensive molecular analysis of the primary tumor guided by histologic analysis may help to better stratify patients for precision medicine approaches. Given the association between the molecular and the histologic heterogeneity, the selection of tumor samples for molecular analysis should be based on meticulous histologic evaluation of the entire tumor.


Assuntos
Mutação , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Antineoplásicos/uso terapêutico , Feminino , Heterogeneidade Genética , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Sequenciamento do Exoma/métodos
4.
Nat Commun ; 12(1): 1749, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741928

RESUMO

Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.


Assuntos
Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Meduloblastoma/genética , Transcriptoma , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Redes Reguladoras de Genes , Variação Genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Adulto Jovem
5.
Cell Stem Cell ; 25(3): 433-446.e7, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31204176

RESUMO

Human neural stem cell cultures provide progenitor cells that are potential cells of origin for brain cancers. However, the extent to which genetic predisposition to tumor formation can be faithfully captured in stem cell lines is uncertain. Here, we evaluated neuroepithelial stem (NES) cells, representative of cerebellar progenitors. We transduced NES cells with MYCN, observing medulloblastoma upon orthotopic implantation in mice. Significantly, transcriptomes and patterns of DNA methylation from xenograft tumors were globally more representative of human medulloblastoma compared to a MYCN-driven genetically engineered mouse model. Orthotopic transplantation of NES cells generated from Gorlin syndrome patients, who are predisposed to medulloblastoma due to germline-mutated PTCH1, also generated medulloblastoma. We engineered candidate cooperating mutations in Gorlin NES cells, with mutation of DDX3X or loss of GSE1 both accelerating tumorigenesis. These findings demonstrate that human NES cells provide a potent experimental resource for dissecting genetic causation in medulloblastoma.


Assuntos
Síndrome do Nevo Basocelular/genética , Neoplasias Encefálicas/genética , Meduloblastoma/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Células-Tronco Neurais/fisiologia , Células Neuroepiteliais/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Síndrome do Nevo Basocelular/metabolismo , Síndrome do Nevo Basocelular/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/genética , RNA Helicases DEAD-box/genética , Modelos Animais de Doenças , Engenharia Genética , Predisposição Genética para Doença , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Camundongos SCID , Proteína Proto-Oncogênica N-Myc/genética , Proteínas de Neoplasias/genética , Receptor Patched-1/genética , Transplante de Células-Tronco , Transplante Heterólogo
6.
Cancer Res ; 79(9): 2111-2123, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877103

RESUMO

Pediatric glioblastoma (pGBM) is a lethal cancer with no effective therapies. To understand the mechanisms of tumor evolution in this cancer, we performed whole-genome sequencing with linked reads on longitudinally resected pGBM samples. Our analyses showed that all diagnostic and recurrent samples were collections of genetically diverse subclones. Clonal composition rapidly evolved at recurrence, with less than 8% of nonsynonymous single-nucleotide variants being shared in diagnostic-recurrent pairs. To track the origins of the mutational events observed in pGBM, we generated whole-genome datasets for two patients and their parents. These trios showed that genetic variants could be (i) somatic, (ii) inherited from a healthy parent, or (iii) de novo in the germlines of pGBM patients. Analysis of variant allele frequencies supported a model of tumor growth involving slow-cycling cancer stem cells that give rise to fast-proliferating progenitor-like cells and to nondividing cells. Interestingly, radiation and antimitotic chemotherapeutics did not increase overall tumor burden upon recurrence. These findings support an important role for slow-cycling stem cell populations in contributing to recurrences, because slow-cycling cell populations are expected to be less prone to genotoxic stress induced by these treatments and therefore would accumulate few mutations. Our results highlight the need for new targeted treatments that account for the complex functional hierarchies and genomic heterogeneity of pGBM. SIGNIFICANCE: This work challenges several assumptions regarding the genetic organization of pediatric GBM and highlights mutagenic programs that start during early prenatal development.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2111/F1.large.jpg.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Mutação , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/patologia , Criança , Perfilação da Expressão Gênica , Glioblastoma/patologia , Humanos , Estudos Longitudinais , Camundongos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Células Tumorais Cultivadas , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...