Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 29(13): 134003, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29372887

RESUMO

Advanced memory technology based on carbon nanotubes (CNTs) (NRAM) possesses desired properties for implementation in a host of integrated systems due to demonstrated advantages of its operation including high speed (nanotubes can switch state in picoseconds), high endurance (over a trillion), and low power (with essential zero standby power). The applicable integrated systems for NRAM have markets that will see compound annual growth rates (CAGR) of over 62% between 2018 and 2023, with an embedded systems CAGR of 115% in 2018-2023 (http://bccresearch.com/pressroom/smc/bcc-research-predicts:-nram-(finally)-to-revolutionize-computer-memory). These opportunities are helping drive the realization of a shift from silicon-based to carbon-based (NRAM) memories. NRAM is a memory cell made up of an interlocking matrix of CNTs, either touching or slightly separated, leading to low or higher resistance states respectively. The small movement of atoms, as opposed to moving electrons for traditional silicon-based memories, renders NRAM with a more robust endurance and high temperature retention/operation which, along with high speed/low power, is expected to blossom in this memory technology to be a disruptive replacement for the current status quo of DRAM (dynamic RAM), SRAM (static RAM), and NAND flash memories.

2.
Adv Mater ; 25(10): 1474-8, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23288623

RESUMO

Multilevel operation in resistive switching memory (RRAM) based on HfOx is demonstrated through variable sizes and orientations of the conductive filament. Memory states with the same resistance, but opposite orientation of defects, display a different response to an applied read voltage, therefore allowing an improvement of the information stored in each physical cell. The multilevel scheme allows a 50% increase (from 2 to 3 bits) of the stored information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...