Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 48(12): 8062-8074, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34725831

RESUMO

PURPOSE: We have experimentally and computationally characterized the PTW microSilicon 60023-type diode's performance in 6 and 15 MV photon fields ≥5 × 5 mm2 projected to isocenter. We tested the detector on- and off-axis at 5 and 15 cm depths in water, and investigated whether its response could be improved by including within it a thin airgap. METHODS: Experimentally, detector readings were taken in fields generated by a Varian TrueBeam linac and compared with doses-to-water measured using Gafchromic film and ionization chambers. An unmodified 60023-type diode was tested along with detectors modified to include 0.6, 0.8, and 1.0 mm thick airgaps. Computationally, doses absorbed by water and detectors' sensitive volumes were calculated using the EGSnrc/BEAMnrc Monte Carlo radiation transport code. Detector response was characterized using k Q c l i n , 4 cm f c l i n , 4 cm , a factor that corrects for differences in the ratio of dose-to-water to detector reading between small fields and the reference condition, in this study 5 cm deep on-axis in a 4 × 4 cm2 field. RESULTS: The greatest errors in measurements of small field doses made using uncorrected readings from the unmodified 60023-type detector were over-responses of 2.6% ± 0.5% and 5.3% ± 2.0% determined computationally and experimentally, relative to the reading-per-dose in the reference field. Corresponding largest errors for the earlier 60017-type detector were 11.9% ± 0.6% and 11.7% ± 1.4% over-responses. Adding even the thinnest, 0.6 mm, airgap to the 60023-type detector over-corrected it, leading to under-responses of up to 4.8% ± 0.6% and 5.0% ± 1.8% determined computationally and experimentally. Further, Monte Carlo calculations indicate that a detector with a 0.3 mm airgap would read correctly to within 1.3% on-axis. The ratio of doses at 15 and 5 cm depths in water in a 6 MV 4 × 4 cm2 field was measured more accurately using the unmodified 60023-type detector than using the 60017-type detector, and was within 0.3% of the ratio measured using an ion chamber. The 60023-type diode's sensitivity also varied negligibly as dose-rate was reduced from 13 to 4 Gy min-1 by decreasing the linac pulse repetition frequency, whereas the sensitivity of the 60017-type detector fell by 1.5%. CONCLUSIONS: The 60023-type detector performed well in small fields across a wide range of beam energies, field sizes, depths, and off-axis positions. Its response can potentially be further improved by adding a thin, 0.3 mm, airgap.


Assuntos
Fótons , Radiometria , Método de Monte Carlo , Aceleradores de Partículas , Água
2.
J Appl Clin Med Phys ; 22(5): 36-47, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33835698

RESUMO

PURPOSE: Explore the feasibility of adopting failure modes and effects analysis (FMEA) for risk assessment of a high volume clinical service at a UK radiotherapy center. Compare hypothetical failure modes to locally reported incidents. METHOD: An FMEA for a lung radiotherapy service was conducted at a hospital that treats ~ 350 lung cancer patients annually with radical radiotherapy. A multidisciplinary team of seven people was identified including a nominated facilitator. A process map was agreed and failure modes identified and scored independently, final failure modes and scores were then agreed at a face-to-face meeting. Risk stratification methods were explored and staff effort recorded. Radiation incidents related to lung radiotherapy reported locally in a 2-year period were analyzed to determine their relation to the identified failure modes. The final FMEA was therefore a combination of prospective evaluation and retrospective analysis from an incident learning system. RESULTS: Thirty-six failure modes were identified for the pre-existing clinical service. The top failure modes varied according to the ranking method chosen. The process required 30 h of combined staff time. Over the 2-year period chosen, 38 voluntarily reported incidents were identified as relating to lung radiotherapy. Of these, 13 were not predicted by the identified failure modes, with six relating to delays in the process, three issues with appointment times, one communication error, two instances of a failure to image, and one technical fault deemed unpredictable by the manufacturer. Four additional failure modes were added to the FMEA following the incident analysis. CONCLUSION: FMEA can be effectively applied to an established high volume service as a risk assessment method. Facilitation by an individual familiar with the FMEA process can reduce resource requirement. Prospective evaluation of risks should be combined with an incident reporting and learning system to produce a more comprehensive analysis of risk.


Assuntos
Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Humanos , Pulmão , Estudos Prospectivos , Estudos Retrospectivos , Medição de Risco , Gestão de Riscos , Reino Unido
3.
Radiother Oncol ; 100(3): 453-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21955664

RESUMO

Detectability and impact of potential treatment machine errors on IMRT treatments were evaluated. The ability of the gamma index to detect deliberately introduced errors was assessed and their clinical impact was assessed using Tumour Control Probability (TCP) and Normal Tissue Complication Probability. TCP was only marginally affected by 2mm errors in MLC position. Dose delivery errors had greater impact but were not detected as effectively using the gamma index. Acceptance criteria should include mean dose as well as gamma to help identify errors in the delivered dose.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde , Radioterapia de Intensidade Modulada/normas , Algoritmos , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Erros Médicos/prevenção & controle , Doses de Radiação , Radiometria/normas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...