Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(5): 3106-3118, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33523072

RESUMO

The hydrogen adsorption free energy (ΔGHads) on the basal plane and edges of MoS2 is studied using periodic density functional theory, with the catalyst supported by a range of two-dimensional carbon-based materials. Understanding how ΔGHads can be tuned with support gives insight into MoS2 as a catalyst for the hydrogen evolution reaction. The supports studied here include graphene oxide materials, heteroatom doped (S, B, and N) graphene, and some insulator materials (hexagonal boron nitride and graphitic carbon nitride). For the basal plane of MoS2, a wide range of values for ΔGHads are observed (between 1.4 and 2.2 eV) depending on the support material used. It is found that ΔGHads relates directly to the energy of occupied p-orbital states in the MoS2 catalyst, which is modified by the support material. On the Mo-edge of MoS2, different supports induce smaller variations in ΔGHads, with values ranging between -0.27 and 0.09 eV. However, a graphene support doped with graphitic N atoms produces a ΔGHads value of exactly 0 eV, which is thermodynamically ideal for hydrogen evolution. Furthermore, ΔGHads is found to relate closely and linearly to the amount of charge transfer between MoS2 and support when they adhere together. The support-induced tuning of ΔGHads on MoS2 observed here provides a useful tool for improving current MoS2 catalysts, and the discovery of variables which mediate changes in ΔGHads contributes to the rational design of new hydrogen evolution catalysts.

2.
Nanoscale Adv ; 3(20): 5860-5871, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132669

RESUMO

The thermodynamics of hydrogen evolution on MoS2 nanotubes is studied for the first time using periodic density functional theory calculations to obtain hydrogen adsorption free energies (ΔG Hads ) on pristine nanotubes and those with S-vacancy defects. Armchair and zigzag MoS2 nanotubes of different diameters, ranging from 12 to 22 Å, are examined. The H adsorption energy is observed to become more favourable (lower ΔG Hads ) as nanotube diameter decreases, with ΔG Hads values ranging from 1.82 to 1.39 eV on the pristine nanotubes, and from 0.03 to -0.30 eV at the nanotube S-vacancy defect sites. An ideal thermoneutral ΔG Hads value of nearly 0 eV is observed at the S-vacancy site on nanotubes around 20 to 22 Å in diameter. For the pristine nanotubes, density of states calculations reveal that electron transfer from S to Mo occurs during H adsorption, and the energy gap between these two states yields a highly reliable linear correlation with ΔG Hads , where a smaller gap leads to a more favourable hydrogen adsorption. For the S-vacancy defect site the H adsorption resembles that on a pure metallic surface, meaning that a traditional d-band centre model can be applied to explain the trends in ΔG Hads . A linear relation between the position of the Mo d-states and ΔG Hads is found, with d-states closer to the Fermi level leading to strong hydrogen adsorption. Overall this work highlights the relevance of MoS2 nanotubes as promising hydrogen evolution catalysts and explains trends in their activity using the energies of the electronic states involved in binding hydrogen.

3.
Phys Chem Chem Phys ; 22(33): 18585-18594, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32785393

RESUMO

The incorporation of transition metals into superatomic species has led to the proposal of highly tailorable systems, with the transition metal atoms typically acting as magnetic dopants. However, the extent to which d-electrons are able to delocalise from their ionic cores has not been fully recognised. In this work a variety of systems have been explored using a range of exchange-correlation functionals commonly used to explore cluster species, to test the extent of d-electron delocalisation under favourable conditions. Early transition metals have been shown to readily delocalise their valence d-electrons for superatomic shell closing, with higher period atoms showing a greater tendency for delocalisation. Our findings also provide the framework for the design of superatomic systems with large numbers of electrons being contributed from a single atom.

4.
Phys Chem Chem Phys ; 22(7): 4051-4058, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32025668

RESUMO

The geometries and electronic structures of icosahedral A13C (A = Sc, Y; C = 0, ±1, ±2) clusters have been determined at a range of multiplicities at each cluster charge, using density functional theory methods. These clusters demonstrate a complex electronic structure which provides insight into the anomalously high magnetic moment of icosahedral group 3 clusters and further contextualises the role of transition metals and d-electrons within the superatomic model. Embedded deeply within the density of states for these clusters are typical superatom orbitals which are populated up to the 2S level. Above the 2S-state there are three states of apparent F symmetry, which are preferentially singly occupied, followed by an abundance of approximately degenerate P-, G-, D- and F-states at the Fermi energy, which are at most singly occupied. In spite of apparent angular symmetry and a nodal structure reminiscent of superatomic orbitals these states are actually formed from preferential overlap of the valence d-orbitals of the cluster atoms. This analysis was further contextualised through analysis of the Sc19 cluster, which shows a similar construction of Kohn-Sham states, but with the breaking of 5-fold symmetry along one of its Cartesian axes. Finally, this work clearly demonstrates the ability of d-electrons to give rise to superatomic orbitals is not just constrained by atomic species but also by the local environment of the atoms.

5.
Phys Chem Chem Phys ; 22(2): 772-780, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31833486

RESUMO

The electronic structure of A7C (A = Hg, Pd, V, Cr, Mn, Fe, Ni, Cu; C = 0, ±1, ±2) clusters has been determined using density functional theory methods. The A7C (A = Hg, Pd, Cr, Cu; C = 0, ±1, ±2) clusters all conform to the existing superatomic model, with a sufficiently stabilised local structure to prevent perturbation upon the introduction of exact exchange to the exchange correlation functional. For the A7C (A = Mn, Fe, Ni; C = 0, ±1, ±2) clusters the incorporation of exact exchange separates the atomic s- and d-electrons, leading to a net increase in the number of superatomic electrons. Conversely the incorporation of exact exchange into the exchange correlation functional decreases the number of superatomic electrons for the V7C (C = 0, ±1, ±2) clusters, owing to the radial extension of the d-orbitals influencing their ability to contribute into superatomic shells.

6.
Phys Chem Chem Phys ; 21(15): 8035-8045, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30932111

RESUMO

The geometries and electronic structures of small M7C (M = Sc, Y, La, Ti, Zr, Hf; C = 0, ±1, ±2) clusters have been calculated at a range of multiplicities at each cluster charge, using density functional theory methods. These clusters conform to the existing superatom model, with some contextual differences. There are a range of states which are populated by the outermost s and d-electrons of the constituent atoms, with an irregular Aufbau rule for the states formed from the atomic d-electrons. The states comprised of d-electrons present themselves as two states of P-symmetry and two states of F-symmetry, which are nearly degenerate, followed by states of D-symmetry, a shell ordering which arises due to the symmetry, and favourable overlap, of the contributing states. The effect of exact exchange in modulating the localisation of these states is also discussed. In addition, this study shows pseudo-superatomic states which arise due to the 5-fold symmetry of the clusters, materialising as either a ring or plane of electron density. In summary, these observations allow for an expansion of the role that early transition metals have within the existing superatom framework.

7.
J Chem Phys ; 147(15): 154307, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29055318

RESUMO

The geometries and electronic structures of small Ninz clusters (n = 8, 9, 10) (z = 0, ±1, 2) have been elucidated for a range of multiplicities for each cluster size and charge, using density functional theory methods. These clusters have been found to conform in part to the existing superatomic model, with each cluster having a filled superatomic S-orbital, filled or partially filled superatomic P-orbitals, and empty or partially filled superatomic D-orbitals. Despite local states of mixed symmetry being present in the immediate vicinity of the Fermi energy, the addition or removal of a single electron from these systems causes a significant shift in the relative energies of the superatomic orbitals. In addition, this study demonstrates the possibility for d-electrons to contribute into superatomic orbitals to a greater or lesser extent, depending on the local environment. In summary, these observations lead to the prospect of a predictive model for electronic shell closings in some transition metal cluster systems.

8.
J Environ Qual ; 33(1): 402-5, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14964397

RESUMO

While the poultry industry is a major economic benefit to several areas in the USA, land application of poultry litter to recycle nutrients can lead to impaired surface and ground water quality. Amending poultry litter with alum [Al3(SO4)2 x 14H2O] has received considerable attention as a method of economically reducing ammonia volatilization in the poultry house and soluble phosphorus in runoff waters. The objective of this study was to characterize the effect of alum on broiler litter decomposition and N dynamics under laboratory conditions. Litter that had been amended with alum in the poultry house after each of the first four of five flock cycles (Experiment I) and litter that had been amended with alum after removal from a poultry house after the third flock cycle (Experiment II) were compared with unamended litter in separate studies. The litters in Experiment I were surface-applied to simulate application to grasslands, while the litters in Experiment II were incorporated to simulate application to conventionally tilled crops. The only statistically significant differences in decomposition due to alum occurred early in Experiment II and the differences were small. The only statistically significant differences in net N mineralization, soil inorganic N, and soil NH4+-N in either experiment was found in Experiment I after 70 d of incubation where soil inorganic N was significantly greater for the alum treatment. Thus, alum had little effect on decomposition or N dynamics. Results of many of the studies on litter not amended with alum should be applicable to litters amended with alum to reduce P availability.


Assuntos
Compostos de Alúmen/química , Esterco , Nitrogênio/química , Solo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água , Animais , Aves Domésticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...