Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(1): e12403, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38173127

RESUMO

In healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue and reduces the risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signalling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 min, and 24 h after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients versus controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system and brain signalling.


Assuntos
Vesículas Extracelulares , Síndrome de Fadiga Crônica , Humanos , Feminino , Síndrome de Fadiga Crônica/diagnóstico , Síndrome de Fadiga Crônica/metabolismo , Vesículas Extracelulares/metabolismo , Exercício Físico/fisiologia , Encéfalo/metabolismo , Transdução de Sinais
2.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693468

RESUMO

In healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue, and reduces risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signaling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 minutes, and 24 hours after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients vs. controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system, and brain signaling.

3.
J Transl Med ; 21(1): 322, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179299

RESUMO

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogenous disease characterized by unexplained persistent fatigue and other features including cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Cytokines are present in plasma and encapsulated in extracellular vesicles (EVs), but there have been only a few reports of EV characteristics and cargo in ME/CFS. Several small studies have previously described plasma proteins or protein pathways that are associated with ME/CFS. METHODS: We prepared extracellular vesicles (EVs) from frozen plasma samples from a cohort of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) cases and controls with prior published plasma cytokine and plasma proteomics data. The cytokine content of the plasma-derived extracellular vesicles was determined by a multiplex assay and differences between patients and controls were assessed. We then performed multi-omic statistical analyses that considered not only this new data, but extensive clinical data describing the health of the subjects. RESULTS: ME/CFS cases exhibited greater size and concentration of EVs in plasma. Assays of cytokine content in EVs revealed IL2 was significantly higher in cases. We observed numerous correlations among EV cytokines, among plasma cytokines, and among plasma proteins from mass spectrometry proteomics. Significant correlations between clinical data and protein levels suggest roles of particular proteins and pathways in the disease. For example, higher levels of the pro-inflammatory cytokines Granulocyte-Monocyte Colony-Stimulating Factor (CSF2) and Tumor Necrosis Factor (TNFα) were correlated with greater physical and fatigue symptoms in ME/CFS cases. Higher serine protease SERPINA5, which is involved in hemostasis, was correlated with higher SF-36 general health scores in ME/CFS. Machine learning classifiers were able to identify a list of 20 proteins that could discriminate between cases and controls, with XGBoost providing the best classification with 86.1% accuracy and a cross-validated AUROC value of 0.947. Random Forest distinguished cases from controls with 79.1% accuracy and an AUROC value of 0.891 using only 7 proteins. CONCLUSIONS: These findings add to the substantial number of objective differences in biomolecules that have been identified in individuals with ME/CFS. The observed correlations of proteins important in immune responses and hemostasis with clinical data further implicates a disturbance of these functions in ME/CFS.


Assuntos
Citocinas , Síndrome de Fadiga Crônica , Humanos , Proteômica , Comunicação Celular , Estudos de Casos e Controles
4.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35358096

RESUMO

Post-exertional malaise (PEM) is a hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We monitored the evolution of 1157 plasma metabolites in 60 ME/CFS (45 female, 15 male) and 45 matched healthy control participants (30 female, 15 male) before and after 2 maximal cardiopulmonary exercise test (CPET) challenges separated by 24 hours, with the intent of provoking PEM in patients. Four time points allowed exploration of the metabolic response to maximal energy-producing capacity and the recovery pattern of participants with ME/CFS compared with the healthy control group. Baseline comparison identified several significantly different metabolites, along with an enriched percentage of yet-to-be identified compounds. Additionally, temporal measures demonstrated an increased metabolic disparity between cohorts, including unknown metabolites. The effects of exertion in the ME/CFS cohort predominantly highlighted lipid-related as well as energy-related pathways and chemical structure clusters, which were disparately affected by the first and second exercise sessions. The 24-hour recovery period was distinct in the ME/CFS cohort, with over a quarter of the identified pathways statistically different from the controls. The pathways that are uniquely different 24 hours after an exercise challenge provide clues to metabolic disruptions that lead to PEM. Numerous altered pathways were observed to depend on glutamate metabolism, a crucial component of the homeostasis of many organs in the body, including the brain.


Assuntos
Síndrome de Fadiga Crônica , Estudos de Coortes , Exercício Físico/fisiologia , Teste de Esforço , Síndrome de Fadiga Crônica/diagnóstico , Feminino , Humanos , Masculino , Metabolômica
5.
J Transl Med ; 18(1): 387, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046133

RESUMO

BACKGROUND: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease of unknown etiology lasting for a minimum of 6 months but usually for many years, with features including fatigue, cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Dysregulation of cytokine signaling could give rise to many of these symptoms. Cytokines are present in both plasma and extracellular vesicles, but little investigation of EVs in ME/CFS has been reported. Therefore, we aimed to characterize the content of extracellular vesicles (EVs) isolated from plasma (including circulating cytokine/chemokine profiling) from individuals with ME/CFS and healthy controls. METHODS: We included 35 ME/CFS patients and 35 controls matched for age, sex and BMI. EVs were enriched from plasma by using a polymer-based precipitation method and characterized by Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM) and immunoblotting. A 45-plex immunoassay was used to determine cytokine levels in both plasma and isolated EVs from a subset of 19 patients and controls. Linear regression, principal component analysis and inter-cytokine correlations were analyzed. RESULTS: ME/CFS individuals had significantly higher levels of EVs that ranged from 30 to 130 nm in size as compared to controls, but the mean size for total extracellular vesicles did not differ between groups. The enrichment of typical EV markers CD63, CD81, TSG101 and HSP70 was confirmed by Western blot analysis and the morphology assessed by TEM showed a homogeneous population of vesicles in both groups. Comparison of cytokine concentrations in plasma and isolated EVs of cases and controls yielded no significant differences. Cytokine-cytokine correlations in plasma revealed a significant higher number of interactions in ME/CFS cases along with 13 inverse correlations that were mainly driven by the Interferon gamma-induced protein 10 (IP-10), whereas in the plasma of controls, no inverse relationships were found across any of the cytokines. Network analysis in EVs from controls showed 2.5 times more significant inter-cytokine interactions than in the ME/CFS group, and both groups presented a unique negative association. CONCLUSIONS: Elevated levels of 30-130 nm EVs were found in plasma from ME/CFS patients and inter-cytokine correlations revealed unusual regulatory relationships among cytokines in the ME/CFS group that were different from the control group in both plasma and EVs. These disturbances in cytokine networks are further evidence of immune dysregulation in ME/CFS.


Assuntos
Vesículas Extracelulares , Síndrome de Fadiga Crônica , Biomarcadores , Citocinas , Humanos , Projetos Piloto
6.
Plants (Basel) ; 9(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121603

RESUMO

OZ1, an RNA editing factor that controls the editing of 14 cytidine targets in Arabidopsis chloroplasts, contains two RanBP2-type zinc finger (Znf) domains. The RanBP2 Znf is a C4-type member of the broader zinc finger family with unique functions and an unusually diverse distribution in plants. The domain can mediate interactions with proteins or RNA and appears in protein types such as proteases, RNA editing factors, and chromatin modifiers; however, few characterized Arabidopsis proteins containing RanBP2 Znfs have been studied specifically with the domain in mind. In humans, RanBP2 Znf-containing proteins are involved in RNA splicing, transport, or transcription initiation. We present a phylogenetic overview of Arabidopsis RanBP2 Znf proteins and the functional niches that these proteins occupy in plants. OZ1 and its four-member family represent a branch of this family with major impact on the RNA biology of chloroplasts and mitochondria in Arabidopsis. We discuss what is known about other plant proteins carrying the RanBP2 Znf domain and point out how phylogenetic information can provide clues to functions of uncharacterized Znf proteins.

7.
J Clin Invest ; 130(3): 1491-1505, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31830003

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease with no known cause or mechanism. There is an increasing appreciation for the role of immune and metabolic dysfunction in the disease. ME/CFS has historically presented in outbreaks, often has a flu-like onset, and results in inflammatory symptoms. Patients suffer from severe fatigue and postexertional malaise. There is little known about the metabolism of specific immune cells in patients with ME/CFS. To investigate immune metabolism in ME/CFS, we isolated CD4+ and CD8+ T cells from 53 patients with ME/CFS and 45 healthy controls. We analyzed glycolysis and mitochondrial respiration in resting and activated T cells, along with markers related to cellular metabolism and plasma cytokines. We found that ME/CFS CD8+ T cells had reduced mitochondrial membrane potential compared with those from healthy controls. Both CD4+ and CD8+ T cells from patients with ME/CFS had reduced glycolysis at rest, whereas CD8+ T cells also had reduced glycolysis following activation. Patients with ME/CFS had significant correlations between measures of T cell metabolism and plasma cytokine abundance that differed from correlations seen in healthy control subjects. Our data indicate that patients have impaired T cell metabolism consistent with ongoing immune alterations in ME/CFS that may illuminate the mechanism behind this disease.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Citocinas , Síndrome de Fadiga Crônica , Mitocôndrias , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Citocinas/sangue , Citocinas/imunologia , Síndrome de Fadiga Crônica/sangue , Síndrome de Fadiga Crônica/imunologia , Síndrome de Fadiga Crônica/patologia , Feminino , Glicólise/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Consumo de Oxigênio/imunologia
8.
Microb Ecol ; 76(3): 660-667, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29500492

RESUMO

Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcripts during an acetate-injection field experiment demonstrated that acetoclastic methanogens from the genus Methanosarcina were enriched after 40 days of acetate amendment. The increased abundance of Methanosarcina corresponded with an accumulation of methane in the groundwater. In order to determine whether Methanosarcina species could be participating in U(VI) reduction in the subsurface, cell suspensions of Methanosarcina barkeri were incubated in the presence of U(VI) with acetate provided as the electron donor. U(VI) was reduced by metabolically active M. barkeri cells; however, no U(VI) reduction was observed in inactive controls. These results demonstrate that Methanosarcina species could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest that Methanosarcina have the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments.


Assuntos
Acetatos/metabolismo , Água Subterrânea/microbiologia , Methanosarcina/metabolismo , Urânio/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Água Subterrânea/química , Metano/análise , Methanosarcina/genética , Methanosarcina/crescimento & desenvolvimento , Oxirredução , Urânio/análise , Poluentes Químicos da Água/análise
9.
PeerJ ; 6: e4282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29375937

RESUMO

Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often suffer from gastrointestinal symptoms and many are diagnosed with irritable bowel syndrome (IBS). Previous studies, including from our laboratory, have demonstrated that the ME/CFS gut bacterial composition is altered and less diverse when compared to healthy individuals. Patients have increased biomarkers of inflammation and leaky gut syndrome. To further investigate dysbiosis in the ME/CFS gut microbiome, we sought to characterize the eukaryotes present in the gut of 49 individuals with ME/CFS and 39 healthy controls. Using 18S rRNA sequencing, we have identified eukaryotes in stool samples of 17 healthy individuals and 17 ME/CFS patients. Our analysis demonstrates a small, nonsignificant decrease in eukaryotic diversity in ME/CFS patients compared to healthy individuals. In addition, ME/CFS patients show a nonsignificant increase in the ratio of fungal phyla Basidiomycota to Ascomycota, which is consistent with ongoing inflammation in ME/CFS. We did not identify specific eukaryotic taxa that are associated with ME/CFS disease status.

10.
Am J Case Rep ; 17: 720-729, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721367

RESUMO

BACKGROUND Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) present with profound fatigue, flu-like symptoms, pain, cognitive impairment, orthostatic intolerance, and post-exertional malaise (PEM), and exacerbation of some or all of the baseline symptoms. CASE REPORT We report on a pair of 34-year-old monozygotic twins discordant for ME/CFS, with WELL, the non-affected twin, and ILL, the affected twin. Both twins performed a two-day cardiopulmonary exercise test (CPET), pre- and post-exercise blood samples were drawn, and both provided stool samples for biochemical and molecular analysis. At peak exertion for both CPETs, ILL presented lower VO2peak and peak workload compared to WELL. WELL demonstrated normal reproducibility of VO2@ventilatory/anaerobic threshold (VAT) during  CPET2, whereas ILL experienced an abnormal reduction of 13% in VAT during  CPET2. A normal rise in lactate dehydrogenase (LDH), creatine kinase (CK), adrenocorticotropic hormone (ACTH), cortisol, creatinine, and ferritin content was observed following exercise for both WELL and ILL at each CPET. ILL showed higher increases of resistin, soluble CD40 ligand (sCD40L), and soluble Fas ligand (sFasL) after exercise compared to WELL. The gut bacterial microbiome and virome were examined and revealed a lower microbial diversity in ILL compared to WELL, with fewer beneficial bacteria such as Faecalibacterium and Bifidobacterium, and an expansion of bacteriophages belonging to the tailed dsDNA Caudovirales order.  CONCLUSIONS Results suggest dysfunctional immune activation in ILL following exercise and that prokaryotic viruses may contribute to mucosal inflammation and bacterial dysbiosis. Therefore, a two-day CPET and molecular analysis of blood and microbiomes could provide valuable information about ME/CFS, particularly if applied to a larger cohort of monozygotic twins.


Assuntos
Doenças em Gêmeos/etiologia , Doenças em Gêmeos/fisiopatologia , Síndrome de Fadiga Crônica/etiologia , Síndrome de Fadiga Crônica/fisiopatologia , Microbioma Gastrointestinal , Gêmeos Monozigóticos , Adulto , Humanos , Masculino
11.
Microbiome ; 4(1): 30, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27338587

RESUMO

BACKGROUND: Gastrointestinal disturbances are among symptoms commonly reported by individuals diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). However, whether ME/CFS is associated with an altered microbiome has remained uncertain. Here, we profiled gut microbial diversity by sequencing 16S ribosomal ribonucleic acid (rRNA) genes from stool as well as inflammatory markers from serum for cases (n = 48) and controls (n = 39). We also examined a set of inflammatory markers in blood: C-reactive protein (CRP), intestinal fatty acid-binding protein (I-FABP), lipopolysaccharide (LPS), LPS-binding protein (LBP), and soluble CD14 (sCD14). RESULTS: We observed elevated levels of some blood markers for microbial translocation in ME/CFS patients; levels of LPS, LBP, and sCD14 were elevated in ME/CFS subjects. Levels of LBP correlated with LPS and sCD14 and LPS levels correlated with sCD14. Through deep sequencing of bacterial rRNA markers, we identified differences between the gut microbiomes of healthy individuals and patients with ME/CFS. We observed that bacterial diversity was decreased in the ME/CFS specimens compared to controls, in particular, a reduction in the relative abundance and diversity of members belonging to the Firmicutes phylum. In the patient cohort, we find less diversity as well as increases in specific species often reported to be pro-inflammatory species and reduction in species frequently described as anti-inflammatory. Using a machine learning approach trained on the data obtained from 16S rRNA and inflammatory markers, individuals were classified correctly as ME/CFS with a cross-validation accuracy of 82.93 %. CONCLUSIONS: Our results indicate dysbiosis of the gut microbiota in this disease and further suggest an increased incidence of microbial translocation, which may play a role in inflammatory symptoms in ME/CFS.


Assuntos
Bactérias/classificação , Disbiose/diagnóstico , Síndrome de Fadiga Crônica/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/análise , Análise de Sequência de DNA/métodos , Proteínas de Fase Aguda/metabolismo , Adulto , Idoso , Biodiversidade , Proteína C-Reativa/metabolismo , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , DNA Ribossômico/análise , Síndrome de Fadiga Crônica/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Fezes/microbiologia , Feminino , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Filogenia , Adulto Jovem
12.
Appl Environ Microbiol ; 81(8): 2735-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25662973

RESUMO

The hyperthermophilic archaeon Ferroglobus placidus can utilize a wide variety of electron donors, including hydrocarbons and aromatic compounds, with Fe(III) serving as an electron acceptor. In Fe(III)-reducing bacteria that have been studied to date, this process is mediated by c-type cytochromes and type IV pili. However, there currently is little information available about how this process is accomplished in archaea. In silico analysis of the F. placidus genome revealed the presence of 30 genes coding for putative c-type cytochrome proteins (more than any other archaeon that has been sequenced to date), five of which contained 10 or more heme-binding motifs. When cell extracts were analyzed by SDS-PAGE followed by heme staining, multiple bands corresponding to c-type cytochromes were detected. Different protein expression patterns were observed in F. placidus cells grown on soluble and insoluble iron forms. In order to explore this result further, transcriptomic studies were performed. Eight genes corresponding to multiheme c-type cytochromes were upregulated when F. placidus was grown with insoluble Fe(III) oxide compared to soluble Fe(III) citrate as an electron acceptor. Numerous archaella (archaeal flagella) also were observed on Fe(III)-grown cells, and genes coding for two type IV pilin-like domain proteins were differentially expressed in Fe(III) oxide-grown cells. This study provides insight into the mechanisms for dissimilatory Fe(III) respiration by hyperthermophilic archaea.


Assuntos
Proteínas Arqueais/genética , Archaeoglobales/genética , Citocromos c/genética , Compostos Férricos/metabolismo , Regulação da Expressão Gênica , Genoma Arqueal , Proteínas Arqueais/metabolismo , Archaeoglobales/metabolismo , Citocromos c/metabolismo , Dados de Sequência Molecular , Oxirredução , Proteoma , Análise de Sequência de DNA , Transcriptoma
13.
Microb Ecol ; 70(1): 154-67, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25592635

RESUMO

To gain an in-depth insight into the diversity and the distribution of genes under the particular evolutionary pressure of an arsenic-rich acid mine drainage (AMD), the genes involved in bacterial arsenic detoxification (arsB, ACR3) and arsenite oxidation (aioA) were investigated in sediment from Carnoulès (France), in parallel to the diversity and global distribution of the metabolically active bacteria. The metabolically active bacteria were affiliated mainly to AMD specialists, i.e., organisms detected in or isolated from AMDs throughout the world. They included mainly Acidobacteria and the non-affiliated "Candidatus Fodinabacter communificans," as well as Thiomonas and Acidithiobacillus spp., Actinobacteria, and unclassified Gammaproteobacteria. The distribution range of these organisms suggested that they show niche conservatism. Sixteen types of deduced protein sequences of arsenite transporters (5 ArsB and 11 Acr3p) were detected, whereas a single type of arsenite oxidase (AioA) was found. Our data suggested that at Carnoulès, the aioA gene was more recent than those encoding arsenite transporters and subjected to a different molecular evolution. In contrast to the 16S ribosomal RNA (16S rRNA) genes associated with AMD environments worldwide, the functional genes aioA, ACR3, and to a lesser extent arsB, were either novel or specific to Carnoulès, raising the question as to whether these functional genes are specific to high concentrations of arsenic, AMD-specific, or site-specific.


Assuntos
Acidobacteria/genética , Arsênio/análise , Biodiversidade , Mineração , Microbiologia do Solo , Poluentes do Solo/análise , ATPases Transportadoras de Arsenito/genética , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , França , Dados de Sequência Molecular , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
14.
ISME J ; 9(2): 333-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25083935

RESUMO

Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site.


Assuntos
Bacteriófagos/genética , Geobacter/virologia , Água Subterrânea/virologia , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Bacteriófagos/isolamento & purificação , Biodegradação Ambiental , Genes Virais , Geobacter/genética , Geobacter/isolamento & purificação , Água Subterrânea/microbiologia , Metagenoma , Proteômica , Transcriptoma , Proteínas Virais/genética
15.
Microbiology (Reading) ; 160(Pt 12): 2694-2709, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25269449

RESUMO

Ferroglobus placidus was discovered to oxidize completely the aromatic amino acids tyrosine, phenylalanine and tryptophan when Fe(III) oxide was provided as an electron acceptor. This property had not been reported previously for a hyperthermophilic archaeon. It appeared that F. placidus follows a pathway for phenylalanine and tryptophan degradation similar to that of mesophilic nitrate-reducing bacteria, Thauera aromatica and Aromatoleum aromaticum EbN1. Phenylacetate, 4-hydroxyphenylacetate and indole-3-acetate were formed during anaerobic degradation of phenylalanine, tyrosine and tryptophan, respectively. Candidate genes for enzymes involved in the anaerobic oxidation of phenylalanine to phenylacetate (phenylalanine transaminase, phenylpyruvate decarboxylase and phenylacetaldehyde : ferredoxin oxidoreductase) were identified in the F. placidus genome. In addition, transcription of candidate genes for the anaerobic phenylacetate degradation, benzoyl-CoA degradation and glutaryl-CoA degradation pathways was significantly upregulated in microarray and quantitative real-time-PCR studies comparing phenylacetate-grown cells with acetate-grown cells. These results suggested that the general strategies for anaerobic degradation of aromatic amino acids are highly conserved amongst bacteria and archaea living in both mesophilic and hyperthermophilic environments. They also provided insights into the diverse metabolism of Archaeoglobaceae species living in hyperthermophilic environments.


Assuntos
Aminoácidos Aromáticos/metabolismo , Archaeoglobales/metabolismo , Anaerobiose , Biotransformação , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Redes e Vias Metabólicas/genética , Análise em Microsséries , Dados de Sequência Molecular , Oxirredução , Fenilacetatos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
16.
Front Microbiol ; 5: 366, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147543

RESUMO

Previous studies have suggested that protozoa prey on Fe(III)- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI) reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and ß-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus ß-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus ß-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane.

17.
J Transl Med ; 12: 104, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24755065

RESUMO

BACKGROUND: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multi-system illness characterized, in part, by increased fatigue following minimal exertion, cognitive impairment, poor recovery to physical and other stressors, in addition to other symptoms. Unlike healthy subjects and other diseased populations who reproduce objective physiological measures during repeat cardiopulmonary exercise tests (CPETs), ME/CFS patients have been reported to fail to reproduce results in a second CPET performed one day after an initial CPET. If confirmed, a disparity between a first and second CPET could serve to identify individuals with ME/CFS, would be able to document their extent of disability, and could also provide a physiological basis for prescribing physical activity as well as a metric of functional impairment. METHODS: 22 subjects diagnosed with ME/CFS completed two repeat CPETs separated by 24 h. Measures of oxygen consumption (VO2), heart rate (HR), minute ventilation (Ve), workload (Work), and respiratory exchange ratio (RER) were made at maximal (peak) and ventilatory threshold (VT) intensities. Data were analyzed using ANOVA and Wilcoxon's Signed-Rank Test (for RER). RESULTS: ME/CFS patients showed significant decreases from CPET1 to CPET2 in VO2peak (13.8%), HRpeak (9 bpm), Ve peak (14.7%), and Work@peak (12.5%). Decreases in VT measures included VO2@VT (15.8%), Ve@VT (7.4%), and Work@VT (21.3%). Peak RER was high (≥1.1) and did not differ between tests, indicating maximum effort by participants during both CPETs. If data from only a single CPET test is used, a standard classification of functional impairment based on VO2peak or VO2@VT results in over-estimation of functional ability for 50% of ME/CFS participants in this study. CONCLUSION: ME/CFS participants were unable to reproduce most physiological measures at both maximal and ventilatory threshold intensities during a CPET performed 24 hours after a prior maximal exercise test. Our work confirms that repeated CPETs warrant consideration as a clinical indicator for diagnosing ME/CFS. Furthermore, if based on only one CPET, functional impairment classification will be mis-identified in many ME/CFS participants.


Assuntos
Síndrome de Fadiga Crônica/fisiopatologia , Consumo de Oxigênio , Adulto , Frequência Cardíaca , Humanos , Pessoa de Meia-Idade
18.
ISME J ; 7(7): 1286-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23446832

RESUMO

The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.


Assuntos
Eucariotos/fisiologia , Geobacter/fisiologia , Água Subterrânea/parasitologia , Urânio/metabolismo , Acetatos/metabolismo , Biodegradação Ambiental , Eucariotos/classificação , Eucariotos/genética , Eucariotos/crescimento & desenvolvimento , Geobacter/classificação , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Urânio/análise
19.
PLoS One ; 8(3): e57819, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23472107

RESUMO

While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux through Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.


Assuntos
Regulação Bacteriana da Expressão Gênica , Geobacter/metabolismo , Geobacter/fisiologia , Microbiologia da Água , Biomassa , Carbono/química , Meio Ambiente , Água Subterrânea , Substâncias Húmicas , Ferro/química , Oxirredução , Fosfatos/química , Plâncton/metabolismo , Proteômica , RNA Ribossômico 16S/metabolismo , Espectrometria de Massas em Tandem , Urânio/química , Vanádio/química
20.
Proc Natl Acad Sci U S A ; 110(12): E1169-78, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23487777

RESUMO

Plant RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of both mitochondria and plastids. Specific targeting of particular Cs is achieved by pentatricopeptide proteins that recognize cis elements upstream of the C that is edited. Members of the RNA-editing factor interacting protein (RIP) family in Arabidopsis have recently been shown to be essential components of the plant editosome. We have identified a gene that contains a pair of truncated RIP domains (RIP-RIP). Unlike any previously described RIP family member, the encoded protein carries an RNA recognition motif (RRM) at its C terminus and has therefore been named Organelle RRM protein 1 (ORRM1). ORRM1 is an essential plastid editing factor; in Arabidopsis and maize mutants, RNA editing is impaired at particular sites, with an almost complete loss of editing for 12 sites in Arabidopsis and 9 sites in maize. Transfection of Arabidopsis orrm1 mutant protoplasts with constructs encoding a region encompassing the RIP-RIP domain or a region spanning the RRM domain of ORRM1 demonstrated that the RRM domain is sufficient for the editing function of ORRM1 in vitro. According to a yeast two-hybrid assay, ORRM1 interacts selectively with pentatricopeptide transfactors via its RIP-RIP domain. Phylogenetic analysis reveals that the RRM in ORRM1 clusters with a clade of RRM proteins that are targeted to organelles. Taken together, these results suggest that other members of the ORRM family may likewise function in RNA editing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastídeos/metabolismo , Edição de RNA/fisiologia , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutação , Plastídeos/genética , Estrutura Terciária de Proteína , RNA de Plantas/genética , Proteínas de Ligação a RNA/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...