Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 114: 1-13, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28214720

RESUMO

Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as a 'cut off criterion', since the most cost-effective option in not always the optimum one.


Assuntos
Olea/química , Águas Residuárias/química , Filtração , Resíduos Industriais , Oxirredução , Eliminação de Resíduos Líquidos
2.
Langmuir ; 29(4): 1152-61, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23281661

RESUMO

Supported biomimetic membranes (SBMs) on solid substrates have been commonly prepared from vesicle-forming double-tail lipids, such as zwitterionic phospholipids, using the method of vesicle fusion. Here we report on the preparation of SBMs on silica surfaces via a similar process of "micelle fusion" from a cationic single-tail bolaamphiphile GLH-20 that forms spherical and elongated thread-like micelles in solution. We demonstrate that, in contrast to zwitterionic phospholipids, GLH-20 self-assembles into a stable contiguous SBM at both low and high ionic strengths. The cationic charge of GLH-20 promotes the formation of a stable SBM through enhanced double-layer interactions with the negatively charged silica surface. It is also shown that spinach aquaporin PM-28 was successfully incorporated within bolaamphiphile SBM in a manner similar to SBMs prepared by vesicle/proteoliposome fusion; thereby the inherent curvature of the micelle surface does not inhibit protein reconstitution. The results suggest that SBMs based on charged bolaamphiphiles might be an attractive platform for applications such as water purification and biosensors, where the stability and low defect rate of SBMs in diverse conditions are crucial for achieving desired performance.


Assuntos
Aquaporinas/química , Materiais Biomiméticos/química , Furanos/química , Fosfolipídeos/química , Proteínas de Plantas/química , Proteolipídeos/química , Piridonas/química , Fusão de Membrana , Membranas Artificiais , Micelas , Concentração Osmolar , Dióxido de Silício/química , Spinacia oleracea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...