Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(5): 1830-1847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743731

RESUMO

Flooding represents a major threat to global agricultural productivity and food security, but plants are capable of deploying a suite of adaptive responses that can lead to short- or longer-term survival to this stress. One cellular pathway thought to help coordinate these responses is via flooding-triggered Ca2+ signaling. We have mined publicly available transcriptomic data from Arabidopsis subjected to flooding or low oxygen stress to identify rapidly upregulated, Ca2+ -related transcripts. We then focused on transporters likely to modulate Ca2+ signals. Candidates emerging from this analysis included AUTOINHIBITED Ca2+ ATPASE 1 and CATION EXCHANGER 2. We therefore assayed mutants in these genes for flooding sensitivity at levels from growth to patterns of gene expression and the kinetics of flooding-related Ca2+ changes. Knockout mutants in CAX2 especially showed enhanced survival to soil waterlogging coupled with suppressed induction of many marker genes for hypoxic response and constitutive activation of others. CAX2 mutants also generated larger and more sustained Ca2+ signals in response to both flooding and hypoxic challenges. CAX2 is a Ca2+ transporter located on the tonoplast, and so these results are consistent with an important role for vacuolar Ca2+ transport in the signaling systems that trigger flooding response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Cátions , Antiporters/genética , Antiporters/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Transporte de Cátions/metabolismo , Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase
2.
NPJ Microgravity ; 9(1): 68, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608048

RESUMO

A large and diverse library of glycan-directed monoclonal antibodies (mAbs) was used to determine if plant cell walls are modified by low-gravity conditions encountered during spaceflight. This method called glycome profiling (glycomics) revealed global differences in non-cellulosic cell wall epitopes in Arabidopsis thaliana root extracts recovered from RNA purification columns between seedlings grown on the International Space Station-based Vegetable Production System and paired ground (1-g) controls. Immunohistochemistry on 11-day-old seedling primary root sections showed that ten of twenty-two mAbs that exhibited spaceflight-induced increases in binding through glycomics, labeled space-grown roots more intensely than those from the ground. The ten mAbs recognized xyloglucan, xylan, and arabinogalactan epitopes. Notably, three xylem-enriched unsubstituted xylan backbone epitopes were more intensely labeled in space-grown roots than in ground-grown roots, suggesting that the spaceflight environment accelerated root secondary cell wall formation. This study highlights the feasibility of glycomics for high-throughput evaluation of cell wall glycans using only root high alkaline extracts from RNA purification columns, and subsequent validation of these results by immunohistochemistry. This approach will benefit plant space biological studies because it extends the analyses possible from the limited amounts of samples returned from spaceflight and help uncover microgravity-induced tissue-specific changes in plant cell walls.

3.
Nat Plants ; 9(6): 877-882, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188852

RESUMO

A micro-cantilever technique applied to individual leaf epidermis cells of intact Arabidopsis thaliana and Nicotiana tabacum synthesizing genetically encoded calcium indicators (R-GECO1 and GCaMP3) revealed that compressive forces induced local calcium peaks that preceded delayed, slowly moving calcium waves. Releasing the force evoked significantly faster calcium waves. Slow waves were also triggered by increased turgor and fast waves by turgor drops in pressure probe tests. The distinct characteristics of the wave types suggest different underlying mechanisms and an ability of plants to distinguish touch from letting go.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tato , Cálcio , Folhas de Planta
4.
NPJ Microgravity ; 9(1): 21, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941263

RESUMO

Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight experiments deposited in the National Aeronautics and Space Administration's GeneLab data repository. These data were reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the complexity in drawing conclusions arising from comparisons made between experiments with very different designs.

5.
Methods Enzymol ; 680: 439-459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710022

RESUMO

Many biotic and abiotic stimuli arrive locally on the plant. For example, attack by an insect or invasion by a fungal pathogen generally starts with a single leaf. However, the responses that are then elicited are often systemic, triggering effects throughout the entire plant body. One of the rapid signaling systems that helps coordinate these plant-wide response networks is changes in cytoplasmic Ca2+ that rapidly propagate throughout the plant. These Ca2+ signals are readily visualized using plants expressing green fluorescent protein-based Ca2+-sensitive bioreporters, such as those of the GCaMP and GECO families. Dissecting the underlying molecular machinery behind this systemic spread of information is often approached by imaging the Ca2+ response in mutants in candidate genes. Introducing the GFP sensor into the relevant genetic backgrounds and then selecting lines usable for imaging can be very time consuming. An alternative, more rapid approach to screening these candidates is through virus-induced gene silencing (VIGS), where target genes are suppressed in the wild-type bioreporter expressing plants. This chapter describes how to generate VIGS constructs targeted to candidate genes and then how to visualize wound-induced, systemic Ca2+ signaling in the VIGS suppressed plants.


Assuntos
Cálcio , Inativação Gênica , Humanos , Cálcio/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Nicotiana/genética
6.
Methods Enzymol ; 680: 461-491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710023

RESUMO

Flooding represents an environmental stress that has widespread effects on plants in natural ecosystems as well as causing major crop losses. As climate change leads to more severe weather extremes, severe flooding events are likely to become even more frequent. Thus, there is intense interest in understanding how flooding affects plants and in identifying cellular and molecular targets for engineering flood resilience into crop species. Such research requires well controlled, highly reproducible flooding protocols for use in the laboratory. However, there are many ways that a plant can be flooded. For example, waterlogging of the soil, where water levels reach the soil surface, generally generates a hypoxic environment around the root system. In contrast, full submergence of the plant adds effects on the aerial organs such as impaired photosynthesis from the combination of lowered CO2 availability and the reduced light penetration into often turbid flood waters. In this chapter, approaches to imposing controlled flooding conditions to the model plant Arabidopsis thaliana are discussed. A series of straight-forward assays are then described to document the effects of stress-related changes in growth patterns, pigment accumulation and levels of oxidative stress. These assays are complemented by monitoring the expression of a series of molecular markers of flood response by qPCR.


Assuntos
Ecossistema , Inundações , Fotossíntese/fisiologia , Solo , Raízes de Plantas/metabolismo
7.
Cell Calcium ; 110: 102695, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669253

RESUMO

Mimosa pudica, the sensitive plant, responds to stimuli such as touch and wounding with leaf movements that propagate throughout the plant. The motion is driven by changes in the turgor of specialized cells in a set of motor organs called pulvinae. By imaging cellular Ca2+ levels as the wave of movement propagates through the leaf, Hagihara and colleagues now show that Ca2+ signals precede and predict the pulvinar movements. These results provide compelling support for a model where Mimosa uses a Ca2+-related response system to trigger its leaf movements. These researchers then used CRISPR to delete a critical genetic regulator of pulvinar development, producing plants with immobile leaves. These plants experienced more herbivory than wild type, suggesting that the Ca2+-triggered leaf movements are an adaptation to deter herbivory.


Assuntos
Mimosa , Mimosa/fisiologia , Tato , Folhas de Planta , Transdução de Sinais
8.
Plant Physiol ; 190(4): 2617-2636, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35972350

RESUMO

A plant's oxygen supply can vary from normal (normoxia) to total depletion (anoxia). Tolerance to anoxia is relevant to wetland species, rice (Oryza sativa) cultivation, and submergence tolerance of crops. Decoding and transmitting calcium (Ca) signals may be an important component to anoxia tolerance; however, the contribution of intracellular Ca transporters to this process is poorly understood. Four functional cation/proton exchangers (CAX1-4) in Arabidopsis (Arabidopsis thaliana) help regulate Ca homeostasis around the vacuole. Our results demonstrate that cax1 mutants are more tolerant to both anoxic conditions and submergence. Using phenotypic measurements, RNA-sequencing, and proteomic approaches, we identified cax1-mediated anoxia changes that phenocopy changes present in anoxia-tolerant crops: altered metabolic processes, diminished reactive oxygen species production post anoxia, and altered hormone signaling. Comparing wild-type and cax1 expressing genetically encoded Ca indicators demonstrated altered cytosolic Ca signals in cax1 during reoxygenation. Anoxia-induced Ca signals around the plant vacuole are involved in the control of numerous signaling events related to adaptation to low oxygen stress. This work suggests that cax1 anoxia response pathway could be engineered to circumvent the adverse effects of flooding that impair production agriculture.


Assuntos
Arabidopsis , Proteínas de Transporte de Cátions , Humanos , Vacúolos/metabolismo , Cálcio/metabolismo , Antiporters/metabolismo , Prótons , Proteômica , Proteínas de Transporte de Cátions/metabolismo , Arabidopsis/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/metabolismo
9.
Methods Mol Biol ; 2494: 3-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35467196

RESUMO

Gravity is a powerful element in shaping plant development, with gravitropism, the oriented growth response of plant organs to the direction of gravity, leading to each plant's characteristic form both above and below ground. Despite being conceptually simple to follow, monitoring a plant's directional growth responses can become complex as variation arises from both internal developmental cues as well as effects of the environment. In this protocol, we discuss approaches to gravitropism assays, focusing on automated analyses of root responses. For Arabidopsis, we recommend a simple 90° rotation using seedlings that are 5-8 days old. If images are taken at regular intervals and the environmental metadata is recorded during both seedling development and gravitropic assay, these data can be used to reveal quantitative kinetic patterns at distinct stages of the assay. The use of software that analyzes root system parameters and stores this data in the RSML format opens up the possibility for a host of root parameters to be extracted to characterize growth of the primary root and a range of lateral root phenotypes.


Assuntos
Arabidopsis , Gravitropismo , Arabidopsis/genética , Gravitropismo/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/genética , Plantas
10.
Mol Plant ; 15(5): 796-798, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35422405

Assuntos
Magnésio
11.
Microbiol Spectr ; 10(1): e0199421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019675

RESUMO

In an ongoing microbial tracking investigation of the International Space Station (ISS), several Sphingomonas strains were isolated. Based on the 16S rRNA gene sequence, phylogenetic analysis identified the ISS strains as Sphingomonas sanguinis (n = 2) and one strain isolated from the Kennedy Space Center cleanroom (used to assemble various Mars mission spacecraft components) as Sphingomonas paucimobilis. Metagenomic sequence analyses of different ISS locations identified 23 Sphingomonas species. An abundance of shotgun metagenomic reads were detected for S. sanguinis in the location from where the ISS strains were isolated. A complete metagenome-assembled genome was generated from the shotgun reads metagenome, and its comparison with the whole-genome sequences (WGS) of the ISS S. sanguinis isolates revealed that they were highly similar. In addition to the phylogeny, the WGS of these Sphingomonas strains were compared with the WGS of the type strains to elucidate genes that can potentially aid in plant growth promotion. Furthermore, the WGS comparison of these strains with the well-characterized Sphingomonas sp. LK11, an arid desert strain, identified several genes responsible for the production of phytohormones and for stress tolerance. Production of one of the phytohormones, indole-3-acetic acid, was further confirmed in the ISS strains using liquid chromatography-mass spectrometry. Pathways associated with phosphate uptake, metabolism, and solubilization in soil were conserved across all the S. sanguinis and S. paucimobilis strains tested. Furthermore, genes thought to promote plant resistance to abiotic stress, including heat/cold shock response, heavy metal resistance, and oxidative and osmotic stress resistance, appear to be present in these space-related S. sanguinis and S. paucimobilis strains. Characterizing these biotechnologically important microorganisms found on the ISS and harnessing their key features will aid in the development of self-sustainable long-term space missions in the future. IMPORTANCESphingomonas is ubiquitous in nature, including the anthropogenically contaminated extreme environments. Members of the Sphingomonas genus have been identified as potential candidates for space biomining beyond earth. This study describes the isolation and identification of Sphingomonas members from the ISS, which are capable of producing the phytohormone indole-3-acetic acid. Microbial production of phytohormones will help future in situ studies, grow plants beyond low earth orbit, and establish self-sustainable life support systems. Beyond phytohormone production, stable genomic elements of abiotic stress resistance, heavy metal resistance, and oxidative and osmotic stress resistance were identified, rendering the ISS Sphingomonas isolate a strong candidate for biotechnology-related applications.


Assuntos
Genômica , Desenvolvimento Vegetal/fisiologia , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Sphingomonas/fisiologia , Ácidos Indolacéticos , Metagenoma , Metagenômica , Filogenia , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , RNA Ribossômico 16S , Astronave , Sphingomonas/classificação , Sequenciamento Completo do Genoma
12.
Methods Mol Biol ; 2368: 81-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647250

RESUMO

Despite mechanical stimulation having profound effects on plant growth and development and modulating responses to many other stimuli, including to gravity, much of the molecular machinery triggering plant mechanical responses remains unknown. This gap in our knowledge arises in part from difficulties in applying reproducible, long-term touch stimulation to plants. We describe the design and implementation of the Automated Botanical Contact Device (ABCD) that applies intermittent, controlled, and highly reproducible mechanical stimulation by drawing a plastic sheet across experimental plants. The device uses a computer numerical control platform and continuously monitors plant growth and development using automated computer vision and image analysis. The system is designed around an open-source architecture to help promote the generation of comparable datasets between laboratories. The ABCD also offers a scalable system that could be deployed in the controlled environment setting, such as a greenhouse, to manipulate plant growth and development through controlled, repetitive mechanostimulation.


Assuntos
Plantas , Tato , Gravitação , Desenvolvimento Vegetal
14.
Plant Physiol ; 187(3): 1690-1703, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618044

RESUMO

Cyclic nucleotide-gated ion channels (CNGCs) have been firmly established as Ca2+-conducting ion channels that regulate a wide variety of physiological responses in plants. CNGC2 has been implicated in plant immunity and Ca2+ signaling due to the autoimmune phenotypes exhibited by null mutants of CNGC2 in Arabidopsis thaliana. However, cngc2 mutants display additional phenotypes that are unique among autoimmune mutants, suggesting that CNGC2 has functions beyond defense and generates distinct Ca2+ signals in response to different triggers. In this study, we found that cngc2 mutants showed reduced gravitropism, consistent with a defect in auxin signaling. This was mirrored in the diminished auxin response detected by the auxin reporters DR5::GUS and DII-VENUS and in a strongly impaired auxin-induced Ca2+ response. Moreover, the cngc2 mutant exhibits higher levels of the endogenous auxin indole-3-acetic acid, indicating that excess auxin in the cngc2 mutant causes its pleiotropic phenotypes. These auxin signaling defects and the autoimmunity syndrome of the cngc2 mutant could be suppressed by loss-of-function mutations in the auxin biosynthesis gene YUCCA6 (YUC6), as determined by identification of the cngc2 suppressor mutant repressor of cngc2 (rdd1) as an allele of YUC6. A loss-of-function mutation in the upstream auxin biosynthesis gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA1, WEAK ETHYLENE INSENSITIVE8) also suppressed the cngc2 phenotypes, further supporting the tight relationship between CNGC2 and the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS-YUCCA -dependent auxin biosynthesis pathway. Taking these results together, we propose that the Ca2+ signal generated by CNGC2 is a part of the negative feedback regulation of auxin homeostasis in which CNGC2 balances cellular auxin perception by influencing auxin biosynthesis.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Homeostase , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
15.
J Vis Exp ; (172)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152317

RESUMO

Plants respond to mechanical stresses such as wounding and herbivory by inducing defense responses both in the damaged and in the distal undamaged parts. Upon wounding of a leaf, an increase in cytosolic calcium ion concentration (Ca2+ signal) occurs at the wound site. This signal is rapidly transmitted to undamaged leaves, where defense responses are activated. Our recent research revealed that glutamate leaking from the wounded cells of the leaf into the apoplast around them serves as a wound signal. This glutamate activates glutamate receptor-like Ca2+ permeable channels, which then leads to long-distance Ca2+ signal propagation throughout the plant. The spatial and temporal characteristics of these events can be captured with real-time imaging of living plants expressing genetically encoded fluorescent biosensors. Here we introduce a plant-wide, real-time imaging method to monitor the dynamics of both the Ca2+ signals and changes in apoplastic glutamate that occur in response to wounding. This approach uses a wide-field fluorescence microscope and transgenic Arabidopsis plants expressing Green Fluorescent Protein (GFP)-based Ca2+ and glutamate biosensors. In addition, we present methodology to easily elicit wound-induced, glutamate-triggered rapid and long-distance Ca2+ signal propagation. This protocol can also be applied to studies on other plant stresses to help investigate how plant systemic signaling might be involved in their signaling and response networks.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Folhas de Planta/metabolismo
17.
iScience ; 24(4): 102361, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870146

RESUMO

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.

19.
Patterns (N Y) ; 1(9): 100148, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33336201

RESUMO

Space agencies have announced plans for human missions to the Moon to prepare for Mars. However, the space environment presents stressors that include radiation, microgravity, and isolation. Understanding how these factors affect biology is crucial for safe and effective crewed space exploration. There is a need to develop countermeasures, to adapt plants and microbes for nutrient sources and bioregenerative life support, and to limit pathogen infection. Scientists across the world are conducting space omics experiments on model organisms and, more recently, on humans. Optimal extraction of actionable scientific discoveries from these precious datasets will only occur at the collective level with improved standardization. To address this shortcoming, we established ISSOP (International Standards for Space Omics Processing), an international consortium of scientists who aim to enhance standard guidelines between space biologists at a global level. Here we introduce our consortium and share past lessons learned and future challenges related to spaceflight omics.

20.
Cell ; 183(5): 1162-1184, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33242416

RESUMO

Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.


Assuntos
Meio Ambiente Extraterreno , Voo Espacial , Astronautas , Saúde , Humanos , Microbiota , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...