Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Magn Reson Imaging ; 47(5): 1306-1315, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28940951

RESUMO

BACKGROUND: Interventional magnetic resonance imaging (MRI) at 3T benefits from higher spatial and temporal resolution, but artifacts of metallic instruments are often larger and may obscure target structures. PURPOSE: To test that compressed sensing (CS) slice-encoding metal artifact correction (SEMAC) is feasible for 3T interventional MRI and affords more accurate instrument visualization than turbo spin echo (TSE) and gradient echo (GRE) techniques, and facilitates faster data acquisition than conventional SEMAC. STUDY TYPE: Prospective. PHANTOM AND SUBJECTS: Cadaveric animal and 20 human subjects. FIELD STRENGTH/SEQUENCE: TSE (acquisition time 31 sec), GRE (28-33 sec), SEMAC (128 sec), and CS-SEMAC (57 sec) pulse sequences were evaluated at 3T. ASSESSMENT: Artifact width and length, signal-to-noise (SNR), and contrast-to-noise (CNR) ratios of 14-22G MR-conditional needles were measured in a phantom. Subsequently, high-bandwidth TSE and CS-SEMAC sequences were assessed in vivo with 20 patient procedures for the size of the metal artifact, image sharpness, image noise, motion artifacts, image contrast, and target, instrument, and structural visibility. STATISTICAL TESTS: Repeated-measures-analysis-of-variances and Mann-Whitney U-tests were applied. P ≤ 0.05 was considered statistically significant. RESULTS: CS-SEMAC and SEMAC created the smallest needle artifact widths (3.2-3.3 ± 0.4 mm, P = 1.0), whereas GRE showed the largest needle artifact widths (8.5-8.6 ± 0.4 mm) (P < 0.001). The artifact width difference between high-bandwidth TSE and CS-SEMAC was 0.8 ± 0.6 mm (P < 0.01). SEMAC and CS-SEMAC created the lowest average needle tip errors (0.3-0.4 ± 0.1 mm, P = 1.0). The average tip error difference between high-bandwidth TSE and SEMAC/CS-SEMAC was 2.0 ± 1.7 mm (P < 0.01). SNR and CNR were similar on TSE, SEMAC, and CS-SEMAC, and lowest on GRE. CS-SEMAC yielded smaller artifacts, less noise, less motion, and better instrument visibility (P < 0.001); high-bandwidth TSE showed better sharpness (P < 0.001) and targets visibility (P = 0.007); whereas image contrast (P = 0.273) and structural visibility (P = 0.1) were similar. DATA CONCLUSION: CS-SEMAC is feasible for interventional MRI at 3T, visualizes instruments with higher accuracy than high-bandwidth TSE and GRE, and can be acquired 55% faster than conventional SEMAC. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:1306-1315.


Assuntos
Artefatos , Meios de Contraste/química , Imagem por Ressonância Magnética Intervencionista , Adulto , Idoso , Animais , Biópsia por Agulha , Cadáver , Estudos de Viabilidade , Feminino , Análise de Fourier , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Fatores de Tempo , Adulto Jovem
2.
Eur Radiol ; 27(9): 3652-3661, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28116515

RESUMO

OBJECTIVES: To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. METHODS: Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. RESULTS: Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). CONCLUSIONS: 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. KEY POINTS: • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.


Assuntos
Articulação do Tornozelo/diagnóstico por imagem , Ligamentos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tendões/diagnóstico por imagem , Adulto , Artefatos , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
3.
J Magn Reson Imaging ; 45(4): 1154-1162, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27796061

RESUMO

PURPOSE: To demonstrate the feasibility, safety, and effectiveness of image-guided sclerotherapy of low-flow vascular malformations using a 1.5 Tesla (T) MR scanner with real-time imaging capability and in-suite fluoroscopy. MATERIALS AND METHODS: Thirty-three procedures were performed with real-time 1.5T MR-guidance on 22 patients with a vascular malformation in the neck (n = 2), chest (n = 6), abdomen and pelvis (n = 15), and extremities (n = 11). Quantitative analysis was performed for changes in (a) planning time, (b) targeting time (interval between needle skin puncture and lesion access), (c) intervention time (interval between needle skin puncture and needle removal), and (d) total procedure time. Qualitative analysis was performed for (a) success of therapy and (b) occurrence of complications. RESULTS: Technical success was achieved in 29 of 33 procedures. The average planning time did not significantly change between the first seven procedures and the last seven procedures (P = 0.447). The average targeting time decreased by 0:24:45 (hours:minutes:seconds) (P = 0.043), the average intervention time decreased by 0:26:58 (P = 0.022), and the average procedure time decreased by 0:28:41 (P = 0.046) when comparing the first seven procedures and the last seven procedures. Overall, there was an improvement in the patients' predominant symptoms following 82% of procedures, including a significant decrease in average pain following therapy (P < 0.001). There was a minor complication rate of 3% with no major complications. CONCLUSION: MR-guided percutaneous sclerotherapy seems to be a safe, effective, and versatile technique for treating low-flow vascular malformations. LEVEL OF EVIDENCE: 3 J. Magn. Reson. Imaging 2017;45:1154-1162.


Assuntos
Imagem por Ressonância Magnética Intervencionista/métodos , Escleroterapia/métodos , Malformações Vasculares/terapia , Adolescente , Adulto , Criança , Estudos de Viabilidade , Feminino , Fluoroscopia , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Malformações Vasculares/diagnóstico por imagem , Adulto Jovem
4.
Skeletal Radiol ; 45(10): 1345-56, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27497594

RESUMO

OBJECTIVE: Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. MATERIALS AND METHODS: Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. RESULTS: There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were "adequate" to "good" on CS-SEMAC and "non-diagnostic" to "adequate" on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). CONCLUSION: Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC.


Assuntos
Artefatos , Compressão de Dados/métodos , Articulação do Quadril/diagnóstico por imagem , Prótese de Quadril , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Próteses Articulares Metal-Metal , Adulto , Idoso , Algoritmos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
5.
Invest Radiol ; 51(10): 666-76, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27518214

RESUMO

OBJECTIVE: The aim of this study was to prospectively test the hypothesis that a compressed sensing-based slice encoding for metal artifact correction (SEMAC) turbo spin echo (TSE) pulse sequence prototype facilitates high-resolution metal artifact reduction magnetic resonance imaging (MRI) of cobalt-chromium knee arthroplasty implants within acquisition times of less than 5 minutes, thereby yielding better image quality than high-bandwidth (BW) TSE of similar length and similar image quality than lengthier SEMAC standard of reference pulse sequences. MATERIALS AND METHODS: This prospective study was approved by our institutional review board. Twenty asymptomatic subjects (12 men, 8 women; mean age, 56 years; age range, 44-82 years) with total knee arthroplasty implants underwent MRI of the knee using a commercially available, clinical 1.5 T MRI system. Two compressed sensing-accelerated SEMAC prototype pulse sequences with 8-fold undersampling and acquisition times of approximately 5 minutes each were compared with commercially available high-BW and SEMAC pulse sequences with acquisition times of approximately 5 minutes and 11 minutes, respectively. For each pulse sequence type, sagittal intermediate-weighted (TR, 3750-4120 milliseconds; TE, 26-28 milliseconds; voxel size, 0.5 × 0.5 × 3 mm) and short tau inversion recovery (TR, 4010 milliseconds; TE, 5.2-7.5 milliseconds; voxel size, 0.8 × 0.8 × 4 mm) were acquired. Outcome variables included image quality, display of the bone-implant interfaces and pertinent knee structures, artifact size, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Statistical analysis included Friedman, repeated measures analysis of variances, and Cohen weighted k tests. Bonferroni-corrected P values of 0.005 and less were considered statistically significant. RESULTS: Image quality, bone-implant interfaces, anatomic structures, artifact size, SNR, and CNR parameters were statistically similar between the compressed sensing-accelerated SEMAC prototype and SEMAC commercial pulse sequences. There was mild blur on images of both SEMAC sequences when compared with high-BW images (P < 0.001), which however did not impair the assessment of knee structures. Metal artifact reduction and visibility of central knee structures and bone-implant interfaces were good to very good and significantly better on both types of SEMAC than on high-BW images (P < 0.004). All 3 pulse sequences showed peripheral structures similarly well. The implant artifact size was 46% to 51% larger on high-BW images when compared with both types of SEMAC images (P < 0.0001). Signal-to-noise ratios and CNRs of fat tissue, tendon tissue, muscle tissue, and fluid were statistically similar on intermediate-weighted MR images of all 3 pulse sequence types. On short tau inversion recovery images, the SNRs of tendon tissue and the CNRs of fat and fluid, fluid and muscle, as well as fluid and tendon were significantly higher on SEMAC and compressed sensing SEMAC images (P < 0.005, respectively). CONCLUSIONS: We accept the hypothesis that prospective compressed sensing acceleration of SEMAC is feasible for high-quality metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants in less than 5 minutes and yields better quality than high-BW TSE and similarly high quality than lengthier SEMAC pulse sequences.


Assuntos
Artroplastia do Joelho/instrumentação , Artefatos , Cromo , Cobalto , Processamento de Imagem Assistida por Computador/métodos , Articulação do Joelho/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Artroplastia do Joelho/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Metais , Pessoa de Meia-Idade , Estudos Prospectivos , Próteses e Implantes , Razão Sinal-Ruído
6.
Invest Radiol ; 51(10): 609-17, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27187045

RESUMO

OBJECTIVE: The aim of this study was to prospectively test the hypothesis that a 2-dimensional (2D) CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration) sampling pattern facilitates 5-minute high spatial resolution 3-dimensional (3D) sampling perfection with application optimized contrast using different flip angle evolutions (SPACE) magnetic resonance imaging (MRI) of the knee with image quality similar or better than current 2D turbo spin echo (TSE) and 3D SPACE standards. MATERIALS AND METHODS: The study was approved by our institutional review board. Twenty asymptomatic subjects (12 men, 8 women; mean age, 42 years; age range, 24-65 years) underwent 3 T MRI of the knee. A 4-fold accelerated 3D SPACE TSE prototype with 2D CAIPIRINHA sampling pattern and 5-minute acquisition time was compared with commercially available 2-fold and 4-fold accelerated 3D SPACE and 2D TSE pulse sequences with acquisition times of 11 minutes and 15 seconds, 6 minutes and 30 seconds, as well as 9 minutes and 48 seconds, respectively. Outcome variables included image quality, anatomic visibility, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Statistical analysis included Friedman, repeated measures analysis of variances, and Cohen's weighted κ tests. Bonferroni-corrected P values of 0.005 and less were considered statistically significant. RESULTS: Overall, image quality, visibility of anatomic structures, SNR, and CNR of 3D CAIPIRINHA SPACE were statistically similar to 2-fold accelerated 3D SPACE and significantly better than 4-fold accelerated 3D SPACE, which exhibited degrading parallel imaging artifacts. Compared with 2.5-mm 2D TSE images, 0.5-mm 3D CAIPIRINHA SPACE images showed statistically similar good edge sharpness and very good contrast resolution, and significantly less partial volume as well as absent chemical shift and pulsatile flow artifacts. Visibility of menisci, anterior cruciate ligament, posterior cruciate ligament, medial collateral ligament, and lateral collateral ligament was good to very good on 0.5-mm 3D CAIPIRINHA SPACE images as compared with good on 2.5-mm 2D TSE image (P < 0.005). The SNR of fat, fluid, and cartilage as well as CNR between cartilage, fluid, fat, posterior cruciate ligament, and menisci were minimally higher on 2.5-mm 2D TSE image (P < 0.005). Image quality, visibility of anatomic structures, SNR, and CNR of 2.5-mm 3D CAIPIRINHA SPACE and 2.5-mm 2D TSE images were good to very good without significant differences. CONCLUSIONS: Three-dimensional SPACE with 2D CAIPIRINHA sampling pattern enables high-quality 3D TSE MRI of the knee at an acquisition time of 5 minutes and image quality, visibility of anatomic structures, SNR, and CNR similar to conventional 3D SPACE and 2D TSE, both of which require approximately 10-minute acquisition times.


Assuntos
Imageamento Tridimensional/métodos , Artropatias/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Artefatos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Adulto Jovem
7.
Eur J Radiol ; 84(8): 1452-1458, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26047820

RESUMO

PURPOSE: To assess the diagnostic value of MRI using dual-echo (2PD) and triple-echo (3PD) chemical shift imaging for liver fat quantification against multi-echo T2 corrected MR spectroscopy (MRS) used as the reference standard, and examine the effect of T2(*) imaging on accuracy of MRI for fat quantification. MATERIALS AND METHODS: Patients who underwent 1.5T liver MRI that incorporated 2PD, 3PD, multi-echo T2(*) and MRS were included in this IRB approved prospective study. Regions of interest were placed in the liver to measure fat fraction (FF) with 2PD and 3PD and compared with MRS-FF. A random subset of 25 patients with a wide range of MRS-FF was analyzed with an advanced FF calculation method, to prove concordance with the 3PD. The statistical analysis included correlation stratified according to T2(*), Bland-Altman analysis, and calculation of diagnostic accuracy for detection of MRS-FF>6.25%. RESULTS: 220 MRI studies were identified in 217 patients (mean BMI 28.0±5.6). 57/217 (26.2%) patients demonstrated liver steatosis (MRS-FF>6.25%). Bland-Altman analysis revealed strong agreement between 3PD and MRS (mean±1.96 SD: -0.5%±4.6%) and weaker agreement between 2PD and MRS (4.7%±16.0%). Sensitivity of 3PD for diagnosing FF> 6.25% was higher than that of 2PD. 3PD-FF showed minor discrepancies (coefficient of variation <10%) from FF measured with the advanced method. CONCLUSION: Our large series study validates the use of 3PD chemical shift sequence for detection of liver fat in the clinical environment, even in the presence of T2(*) shortening.


Assuntos
Tecido Adiposo/patologia , Fígado Gorduroso/diagnóstico , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes
8.
J Magn Reson Imaging ; 41(2): 525-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24395498

RESUMO

PURPOSE: Image-guided treatment of low-flow vascular (venous or lymphatic) malformations presents a challenging visualization problem, regardless of the imaging modality being used for guidance. The purpose of this study was to employ a new magnetic resonance imaging (MRI) sequence, T2 -weighted interrupted balanced steady-state free precession (T2 W-iSSFP), for real-time image guidance of needle insertion. MATERIALS AND METHODS: T2 W-iSSFP uses variable flip angle balanced steady-state free precession (bSSFP, a.k.a. SSFP) to establish T2 -weighting and fat suppression. Swine (n = 3) and patients (n = 4, three female, all with venous malformations) were enrolled in the assessment. T2 -weighted turbo spin echo (T2 -TSE) with spectral adiabatic inversion recovery (SPAIR), SPAIR-T2 -TSE or T2 -TSE for short, was used as the reference. T2 -weighted half Fourier acquired single shot turbo spin echo (T2 -HASTE) with SPAIR (SPAIR-T2 -HASTE, T2 -HASTE for short), fat saturated bSSFP (FS-SSFP), and T2 W-iSSFP were imaged. Numeric metrics, namely, contrast-to-noise ratio (CNR) efficiency (CNR divided by the square root of acquisition time) and local sharpness (the reciprocal of edge width), were used to assess image quality. MR-guided sclerotherapy was performed on the same patients using real-time T2 W-iSSFP to guide needle insertion. RESULTS: Comparing the visualization of needles in the images of swine, the local sharpness (mm(-1) ) was: 0.21 ± 0.06 (T2 -HASTE), 0.48 ± 0.02 (FS-SSFP), and 0.49 ± 0.03 (T2 W-iSSFP). T2 W-iSSFP is higher than T2 -HASTE (P < 0.001). For the patient images, their CNR efficiencies were: 797 ± 66 (T2 -HASTE), 281 ± 44 (FS-SSFP), and 860 ± 29 (T2 W-iSSFP). T2 W-iSSFP is higher than FS-SSFP (P < 0.02). The frame rate of T2 W-iSSFP was 2.5-3.5 frames per second. All MR-guided sclerotherapy procedures were successful, with all needles (six punctures) placed in the targets. CONCLUSION: T2 W-iSSFP provides effective lesion identification and needle visualization. This new pulse sequence can be used for MR-guided sclerotherapy of low-flow vascular malformations. It may have potential use in other MR-guided procedures where heavily T2 -weighted real-time images are needed.


Assuntos
Imagem por Ressonância Magnética Intervencionista/métodos , Escleroterapia/métodos , Malformações Vasculares/terapia , Adulto , Animais , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Agulhas , Suínos
9.
Radiology ; 272(2): 427-37, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24749713

RESUMO

PURPOSE: To assess intrapericardial delivery of microencapsulated, xenogeneic human mesenchymal stem cells (hMSCs) by using x-ray fused with magnetic resonance (MR) imaging (x-ray/MR imaging) guidance as a potential treatment for ischemic cardiovascular disease in an immunocompetent swine model. MATERIALS AND METHODS: All animal experiments were approved by the institutional animal care and use committee. Stem cell microencapsulation was performed by using a modified alginate-poly-l-lysine-alginate encapsulation method to include 10% (wt/vol) barium sulfate to create barium-alginate microcapsules (BaCaps) that contained hMSCs. With x-ray/MR imaging guidance, eight female pigs (approximately 25 kg) were randomized to receive either BaCaps with hMSCs, empty BaCaps, naked hMSCs, or saline by using a percutaneous subxiphoid approach and were compared with animals that received empty BaCaps (n = 1) or BaCaps with hMSCs (n = 2) by using standard fluoroscopic delivery only. MR images and C-arm computed tomographic (CT) images were acquired before injection and 1 week after delivery. Animals were sacrificed immediately or at 1 week for histopathologic validation. Cardiac function between baseline and 1 week after delivery was evaluated by using a paired Student t test. RESULTS: hMSCs remained highly viable (94.8% ± 6) 2 days after encapsulation in vitro. With x-ray/MR imaging, successful intrapericardial access and delivery were achieved in all animals. BaCaps were visible fluoroscopically and at C-arm CT immediately and 1 week after delivery. Whereas BaCaps were free floating immediately after delivery, they consolidated into a pseudoepicardial tissue patch at 1 week, with hMSCs remaining highly viable within BaCaps; naked hMSCs were poorly retained. Follow-up imaging 1 week after x-ray/MR imaging-guided intrapericardial delivery showed no evidence of pericardial adhesion and/or effusion or adverse effect on cardiac function. In contradistinction, BaCaps delivery with x-ray fluoroscopy without x-ray/MR imaging (n = 3) resulted in pericardial adhesions and poor hMSC viability after 1 week. CONCLUSION: Intrapericardial delivery of BaCaps with hMSCs leads to high cell retention and survival. With x-ray/MR imaging guidance, intrapericardial delivery can be performed safely in the absence of preexisting pericardial effusion to provide a novel route for cardiac cellular regenerative therapy.


Assuntos
Doença das Coronárias/terapia , Imagem por Ressonância Magnética Intervencionista/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Imagem Multimodal/métodos , Pericárdio , Animais , Estudos de Viabilidade , Feminino , Fluoroscopia , Humanos , Imageamento Tridimensional , Modelos Animais , Radiografia Intervencionista , Reprodutibilidade dos Testes , Suínos
10.
Magn Reson Med ; 71(6): 2243-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23900921

RESUMO

PURPOSE: A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T magnetic resonance imaging system. METHODS: The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology. Acquiring orthogonal projections of these markers determined the position and orientation of the device, which was used to define the scan plane for a subsequent image acquisition. Device localization and scan plane update required approximately 30 ms, so it could be interleaved with high temporal resolution imaging. Since the wireless device is used for localization and does not require full imaging capability, the design of the SSB wireless system was simplified by allowing an asynchronous clock between the transmitter and receiver. RESULTS: When coupled to a high readout bandwidth, the error caused by the lack of a shared frequency reference was quantified to be less than one pixel (0.78 mm) in the projection acquisitions. Image guidance with the prototype was demonstrated with a phantom where a needle was successfully guided to a target and contrast was delivered. CONCLUSION: The feasibility of active tracking with a wireless detector array is demonstrated. Wireless arrays could be incorporated into devices to assist in image-guided procedures.


Assuntos
Marcadores Fiduciais , Imageamento por Ressonância Magnética/instrumentação , Tecnologia sem Fio , Desenho de Equipamento , Estudos de Viabilidade , Imagens de Fantasmas
11.
Radiology ; 266(3): 912-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23297324

RESUMO

PURPOSE: To evaluate and compare the technical accuracy and feasibility of magnetic resonance (MR) imaging-enhanced fluoroscopic guidance and real-time MR imaging guidance for percutaneous puncture procedures in phantoms and animals. MATERIALS AND METHODS: The experimental protocol was approved by the institutional animal care and use committee. Punctures were performed in phantoms, aiming for markers (20 each for MR imaging-enhanced fluoroscopic guidance and real-time MR imaging guidance), and pigs, aiming for anatomic landmarks (10 for MR imaging-enhanced fluoroscopic guidance and five for MR imaging guidance). To guide the punctures, T1-weighted three-dimensional (3D) MR images of the phantom or pig were acquired. Additional axial and coronal T2-weighted images were used to visualize the anatomy in the animals. For MR imaging-enhanced fluoroscopic guidance, phantoms and pigs were transferred to the fluoroscopic system after initial MR imaging and C-arm computed tomography (CT) was performed. C-arm CT and MR imaging data sets were coregistered. Prototype navigation software was used to plan a puncture path with use of MR images and to superimpose it on fluoroscopic images. For real-time MR imaging, an interventional MR imaging prototype for interactive real-time section position navigation was used. Punctures were performed within the magnet bore. After completion, 3D MR imaging was performed to evaluate the accuracy of insertions. Puncture durations were compared by using the log-rank test. The Mann-Whitney U test was applied to compare the spatial errors. RESULTS: In phantoms, the mean total error was 8.6 mm ± 2.8 with MR imaging-enhanced fluoroscopic guidance and 4.0 mm ± 1.2 with real-time MR imaging guidance (P < .001). The mean puncture time was 2 minutes 10 seconds ± 44 seconds with MR imaging-enhanced fluoroscopic guidance and 37 seconds ± 14 with real-time MR imaging guidance (P < .001). In the animal study, a tolerable distance (<1 cm) between target and needle tip was observed for both MR imaging-enhanced fluoroscopic guidance and real-time MR imaging guidance. The mean total error was 7.7 mm ± 2.4 with MR imaging-enhanced fluoroscopic guidance and 7.9 mm ± 4.9 with real-time MR imaging guidance (P = .77). The mean puncture time was 5 minutes 43 seconds ± 2 minutes 7 seconds with MR imaging-enhanced fluoroscopic guidance and 5 minutes 14 seconds ± 2 minutes 25 seconds with real-time MR imaging guidance (P = .68). CONCLUSION: Both MR imaging-enhanced fluoroscopic guidance and real-time MR imaging guidance demonstrated reasonable and similar accuracy in guiding needle placement to selected targets in phantoms and animals.


Assuntos
Biópsia por Agulha/métodos , Fluoroscopia/métodos , Biópsia Guiada por Imagem/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Punções/métodos , Animais , Sistemas Computacionais , Estudos de Viabilidade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
12.
J Magn Reson Imaging ; 37(5): 1202-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23334924

RESUMO

PURPOSE: To develop and evaluate software-based methods for improving the workflow of magnetic resonance (MR)-guided percutaneous interventions. MATERIALS AND METHODS: A set of methods was developed that allows the user to: 1) plan an entire procedure, 2) directly apply this plan to skin entry site localization without further imaging, and 3) place a needle under real-time MR guidance with automatic alignment of three orthogonal slices along a planned trajectory with preference to the principal patient axes. To validate targeting accuracy and time, phantom experiments (96 targets) and in vivo paraspinal and kidney needle punctures in two pigs (55 targets) were performed. The influence of trajectory obliquity, level of experience, and organ motion on targeting accuracy and time was analyzed. RESULTS: Mean targeting error was 1.8 ± 0.9 mm (in vitro) and 2.9 ± 1.0 mm (in vivo) in all directions. No statistically significant differences in targeting accuracy between single- and double-oblique trajectories, novice and expert users, or paraspinal and kidney punctures were observed. The average time (in vivo) from trajectory planning to verification of accurate needle placement was 6 minutes. CONCLUSION: The developed methods allow for accurate needle placement along complex trajectories and are anticipated to reduce table time for MR-guided percutaneous needle interventions.


Assuntos
Técnicas de Ablação/métodos , Biópsia por Agulha/métodos , Interpretação de Imagem Assistida por Computador/métodos , Biópsia Guiada por Imagem/métodos , Injeções/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Fluxo de Trabalho , Técnicas de Ablação/instrumentação , Algoritmos , Animais , Biópsia por Agulha/instrumentação , Estudos de Viabilidade , Aumento da Imagem/métodos , Biópsia Guiada por Imagem/instrumentação , Imageamento Tridimensional/métodos , Injeções/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software , Suínos
13.
Stem Cells ; 30(6): 1286-96, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22438076

RESUMO

The therapeutic goal in peripheral arterial disease (PAD) patients is to restore blood flow to ischemic tissue. Stem cell transplantation offers a new avenue to enhance arteriogenesis and angiogenesis. Two major problems with cell therapies are poor cell survival and the lack of visualization of cell delivery and distribution. To address these therapeutic barriers, allogeneic bone marrow-derived mesenchymal stem cells (MSCs) were encapsulated in alginate impregnated with a radiopaque contrast agent (MSC-Xcaps). In vitro MSC-Xcap viability by a fluorometric assay was high (96.9% ± 2.7% at 30 days postencapsulation) and as few as 10 Xcaps were visible on clinical x-ray fluoroscopic systems. Using an endovascular PAD model, rabbits (n = 21) were randomized to receive MSC-Xcaps (n = 6), empty Xcaps (n = 5), unencapsulated MSCs (n = 5), or sham intramuscular injections (n = 5) in the ischemic thigh 24 hours postocclusion. Immediately after MSC transplantation and 14 days later, digital radiographs acquired on a clinical angiographic system demonstrated persistent visualization of the Xcap injection sites with retained contrast-to-noise. Using a modified TIMI frame count, quantitative angiography demonstrated a 65% improvement in hind limb perfusion or arteriogenesis in MSC-Xcap-treated animals versus empty Xcaps. Post-mortem immunohistopathology of vessel density by anti-CD31 staining demonstrated an 87% enhancement in angiogenesis in Xcap-MSC-treated animals versus empty Xcaps. MSC-Xcaps represent the first x-ray-visible cellular therapeutic with enhanced efficacy for PAD treatment.


Assuntos
Membro Posterior/irrigação sanguínea , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Doença Arterial Periférica/cirurgia , Animais , Tomografia Computadorizada de Feixe Cônico/métodos , Modelos Animais de Doenças , Membro Posterior/patologia , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/citologia , Doença Arterial Periférica/fisiopatologia , Coelhos , Raios X
14.
Magn Reson Med ; 67(1): 278-89, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21656554

RESUMO

Understanding how individual cells behave inside living systems will help enable new diagnostic tools and cellular therapies. Superparamagnetic iron oxide particles can be used to label cells and theranostic capsules for noninvasive tracking using MRI. Contrast changes from superparamagnetic iron oxide are often subtle relative to intrinsic sources of contrast, presenting a detection challenge. Here, we describe a versatile postprocessing method, called Phase map cross-correlation Detection and Quantification (PDQ), that automatically identifies localized deposits of superparamagnetic iron oxide, estimating their volume magnetic susceptibility and magnetic moment. To demonstrate applicability, PDQ was used to detect and characterize superparamagnetic iron oxide-labeled magnetocapsules implanted in porcine liver and suspended in agarose gel. PDQ was also applied to mouse brains infiltrated by MPIO-labeled macrophages following traumatic brain injury; longitudinal, in vivo studies tracked individual MPIO clusters over 3 days, and tracked clusters were corroborated in ex vivo brain scans. Additionally, we applied PDQ to rat hearts infiltrated by MPIO-labeled macrophages in a transplant model of organ rejection. PDQ magnetic measurements were signal-to-noise ratio invariant for images with signal-to-noise ratio > 11. PDQ can be used with conventional gradient-echo pulse sequences, requiring no extra scan time. The method is useful for visualizing biodistribution of cells and theranostic magnetocapsules and for measuring their relative iron content.


Assuntos
Rastreamento de Células/métodos , Dextranos , Macrófagos/citologia , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Reconhecimento Automatizado de Padrão , Animais , Meios de Contraste , Campos Magnéticos , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem/métodos
15.
J Neuroradiol ; 39(3): 142-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21723608

RESUMO

OBJECTIVE: Normative apparent diffusion coefficient (ADC) and fractional anisotropy (FA) metrics of the brain have been published previously. However, no larger studies evaluated the normal evolution of ADC/FA metrics of the maturing paediatric spinal cord. Goal of this study is to evaluate the age-dependent evolution of the ADC/FA values of the developing/maturing normal cervical spinal cord (CSC). PATIENTS AND METHODS: Forty-one subjects, aged less than 18 years with a negative spinal MRI study and no systemic central nervous disease, underwent diffusion tensor imaging (DTI) of the CSC. DTI metrics were measured in the centre of the CSC. Regression and ANCOVA analyses were performed to evaluate the association between ADC/FA values and age and its potential modification by sex. RESULTS: A linear model emerged as the best fit for our data. ADC showed a continuous decrease with age; FA showed a continuous increase with age. CONCLUSION: The simultaneous age-related ADC decrease and FA increase likely reflect progressive maturation, myelination and fibre packing within the CSC similar to that observed in the brain. Collection of age-dependent normative DTI metrics may be helpful in the early identification and quantification of altered water diffusion in a variety of pathologies affecting the developing paediatric spinal cord.


Assuntos
Envelhecimento/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Medula Espinal/anatomia & histologia , Medula Espinal/crescimento & desenvolvimento , Adolescente , Vértebras Cervicais/anatomia & histologia , Vértebras Cervicais/crescimento & desenvolvimento , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
16.
Contrast Media Mol Imaging ; 6(4): 251-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21861285

RESUMO

In vivo imaging of engraftment and immunorejection of transplanted islets is critical for further clinical development, with (1)H MR imaging of superparamagnetic iron oxide-labeled cells being the current premier modality. Using perfluorocarbon nanoparticles, we present here a strategy for non-invasive imaging of cells using other modalities. To this end, human cadaveric islets were labeled with rhodamine-perfluorooctylbromide (PFOB) nanoparticles, rhodamine-perfluoropolyether (PFPE) nanoparticles or Feridex as control and tested in vitro for cell viability and c-peptide secretion for 1 week. (19)F MRI, computed tomography (CT) and ultrasound (US) imaging was performed on labeled cell phantoms and on cells following transplantation beneath the kidney capsule of mice and rabbits. PFOB and PFPE-labeling did not reduce human islet viability or glucose responsiveness as compared with unlabeled cells or SPIO-labeled cells. PFOB- and PFPE-labeled islets were effectively fluorinated for visualization by (19)F MRI. PFOB-labeled islets were acoustically reflective for detection by US imaging and became sufficiently brominated to become radiopaque allowing visualization with CT. Thus, perfluorocarbon nanoparticles are multimodal cellular contrast agents that may find applications in real-time targeted delivery and imaging of transplanted human islets or other cells in a clinically applicable manner using MRI, US or CT imaging.


Assuntos
Rastreamento de Células/métodos , Fluorocarbonos/química , Ilhotas Pancreáticas/citologia , Nanopartículas/química , Animais , Humanos , Técnicas In Vitro , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Coelhos
17.
J Vasc Interv Radiol ; 22(9): 1335-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21816623

RESUMO

PURPOSE: The authors previously developed magnetic resonance (MR)-trackable magnetocapsules (MCs) that can simultaneously immunoprotect human islet cells and noninvasively monitor portal delivery and engraftment in real time with MR imaging. This study was designed to assess the physiologic effects of the delivery of a clinical dose of MCs (140,000 capsules) into the portal vein (PV) in swine over a 1-month period. MATERIALS AND METHODS: MCs were formed by using clinical-grade alginate mixed with a clinically applicable dosage of ferumoxide. Percutaneous access into the PV was obtained by using a custom-built, MR-trackable needle, and 140,000 MCs were delivered under MR guidance in five swine. Portal pressures and liver function data were obtained over a 4-week period. RESULTS: A transient increase in portal pressure occurred immediately after MC delivery that returned to normal levels by 4 weeks after MC delivery. Liver function test results were normal during the entire period, and the appearance of the MCs on MR imaging did not change. CONCLUSIONS: A clinically applicable dose of 140,000 MCs has no adverse effects on portal pressures or liver function in this normal swine model during the first month after delivery.


Assuntos
Alginatos/administração & dosagem , Dextranos/administração & dosagem , Transplante das Ilhotas Pancreáticas/métodos , Fígado/irrigação sanguínea , Angiografia por Ressonância Magnética , Imagem por Ressonância Magnética Intervencionista , Magnetismo , Nanopartículas de Magnetita/administração & dosagem , Imagem Molecular/métodos , Veia Porta , Animais , Cápsulas , Meios de Contraste , Gadolínio DTPA , Ácido Glucurônico/administração & dosagem , Ácidos Hexurônicos/administração & dosagem , Injeções Intravenosas , Fígado/metabolismo , Testes de Função Hepática , Pressão na Veia Porta , Punções , Suínos , Fatores de Tempo
18.
Rev Esp Cardiol ; 62(8): 918-27, 2009 Aug.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-19706247

RESUMO

Cell therapy continues to be an active area of basic science research with early promise in the treatment of cardiovascular diseases. However, there are many unknowns including the mechanisms by which they work, the most useful cell types, the most efficient delivery strategies, and their safety. Noninvasive imaging provides a wide array of tools to quantitatively address many of these unknowns. This article reviews echocardiography, magnetic resonance imaging, computed tomography, positron emission tomography and single photon emission tomography in the context of imaging cellular therapeutics to demonstrate how these modalities are being used to answer some of these questions.


Assuntos
Cardiopatias/diagnóstico , Cardiopatias/cirurgia , Transplante de Células-Tronco , Diagnóstico por Imagem , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único
19.
Rev. esp. cardiol. (Ed. impr.) ; 62(8): 918-927, ago. 2009. us
Artigo em Espanhol | IBECS | ID: ibc-72344

RESUMO

La terapia celular continúa siendo un área muy activa en el campo de la investigación básica, con resultados iniciales prometedores en el tratamiento de las enfermedades cardiovasculares. Sin embargo, aún existen muchos factores desconocidos en la terapia celular, entre los que se incluyen el mecanismo de acción, los tipos de células que resultan más útiles, las estrategias de administración más eficaces, así como su seguridad. La obtención de imágenes con métodos no invasivos permite utilizar una gran variedad de herramientas para valorar cuantitativamente muchos de estos factores desconocidos. En este artículo nos centramos en la ecocardiografía, la resonancia magnética, la tomografía computarizada, la tomografía por emisión de positrones y la tomografía por emisión de fotón único en el contexto de la terapia celular, para explicar la forma en que estas modalidades de imagen se están utilizando para dar respuesta a muchas de esas cuestiones (AU)


Cell therapy continues to be an active area of basic science research with early promise in the treatment of cardiovascular diseases. However, there are many unknowns including the mechanisms by which they work, the most useful cell types, the most efficient delivery strategies, and their safety. Noninvasive imaging provides a wide array of tools to quantitatively address many of these unknowns. This article reviews echocardiography, magnetic resonance imaging, computed tomography, positron emission tomography and single photon emission tomography in the context of imaging cellular therapeutics to demonstrate how these modalities are being used to answer some of these questions (AU)


Assuntos
Humanos , Masculino , Feminino , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Doenças Cardiovasculares/terapia , Diagnóstico por Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , /métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia por Emissão de Pósitrons/métodos , Células-Tronco , Radioisótopos , Tomografia por Emissão de Pósitrons/tendências , Medicina Nuclear/métodos , Imageamento por Ressonância Magnética/tendências
20.
Radiology ; 249(2): 501-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18780823

RESUMO

PURPOSE: To evaluate the utility of inversion recovery with on-resonant water suppression (IRON) in combination with injection of the long-circulating monocrystalline iron oxide nanoparticle (MION)-47 for contrast material-enhanced magnetic resonance (MR) angiography. MATERIALS AND METHODS: Experiments were approved by the institutional animal care committee. Eleven rabbits were imaged at baseline before injection of a contrast agent and then serially 5-30 minutes, 2 hours, 1 day, and 3 days after a single intravenous bolus injection of 80 micromol of MION-47 per kilogram of body weight (n = 6) or 250 micromol/kg MION-47 (n = 5). Conventional T1-weighted MR angiography and IRON MR angiography were performed on a clinical 3.0-T imager. Signal-to-noise and contrast-to-noise ratios were measured in the aorta of rabbits in vivo. Venous blood was obtained from the rabbits before and after MION-47 injection for use in phantom studies. RESULTS: In vitro blood that contained MION-47 appeared signal attenuated on T1-weighted angiograms, while characteristic signal-enhanced dipolar fields were observed on IRON angiograms. In vivo, the vessel lumen was signal attenuated on T1-weighted MR angiograms after MION-47 injection, while IRON supported high intravascular contrast by simultaneously providing positive signal within the vessels and suppressing background tissue (mean contrast-to-noise ratio, 61.9 +/- 12.4 [standard deviation] after injection vs 1.1 +/- 0.4 at baseline, P < .001). Contrast-to-noise ratio was higher on IRON MR angiograms than on conventional T1-weighted MR angiograms (9.0 +/- 2.5, P < .001 vs IRON MR angiography) and persisted up to 24 hours after MION-47 injection (76.2 +/- 15.9, P < .001 vs baseline). CONCLUSION: IRON MR angiography in conjunction with superparamagnetic nanoparticle administration provides high intravascular contrast over a long time and without the need for image subtraction.


Assuntos
Angiografia por Ressonância Magnética/métodos , Animais , Meios de Contraste/administração & dosagem , Óxido Ferroso-Férrico/administração & dosagem , Nanopartículas/administração & dosagem , Imagens de Fantasmas , Coelhos , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...