Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 48(5): 995-1005, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19187035

RESUMO

Dehaloperoxidase (DHP), the oxygen transport hemoglobin from the terebellid polychaete Amphitrite ornata, is the first globin identified to possess a biologically relevant peroxidase activity. DHP has been shown to oxidize trihalophenols to dihaloquinones in a dehalogenation reaction that uses hydrogen peroxide as a substrate. Herein, we demonstrate that the first detectable intermediate following the addition of hydrogen peroxide to ferric DHP contains both a ferryl heme and a tyrosyl radical, analogous to Compound ES of cytochrome c peroxidase. Furthermore, we provide a detailed kinetic description for the reaction of preformed DHP Compound ES with the substrate 2,4,6-trichlorophenol and demonstrate the catalytic competency of this intermediate in generating the product 2,4-dichloroquinone. Using rapid-freeze-quench electron paramagnetic resonance spectroscopy, we detected a g approximately 2.0058 signal confirming the presence of a protein radical in DHP Compound ES. In the absence of substrate, DHP Compound ES evolves to a new species, Compound RH, which is functionally unique to dehaloperoxidase. We propose that this intermediate plays a protective role against heme bleaching. While unreactive toward further oxidation, Compound RH can be reduced and subsequently bind dioxygen, generating oxyferrous DHP, which may represent the catalytic link between peroxidase and oxygen transport activities in this bifunctional protein.


Assuntos
Clorofenóis/química , Citocromo-c Peroxidase/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Hemoglobinas/química , Peroxidases/química , Poliquetos/enzimologia , Animais , Sítios de Ligação , Clorofenóis/metabolismo , Cristalografia por Raios X , Citocromo-c Peroxidase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hemoglobinas/metabolismo , Peroxidases/metabolismo
2.
Langmuir ; 20(25): 11134-40, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15568868

RESUMO

Single- and double-stranded deoxy ribonucleic acid (DNA) molecules attached to self-assembled monolayers (SAMs) on gold surfaces were characterized by a number of optical and electronic spectroscopic techniques. The DNA-modified gold surfaces were prepared through the self-assembly of 6-mercapto-1-hexanol and 5'-C(6)H(12)SH -modified single-stranded DNA (ssDNA). Upon hybridization of the surface-bound probe ssDNA with its complimentary target, formation of double-stranded DNA (dsDNA) on the gold surface is observed and in a competing process, probe ssDNA is desorbed from the gold surface. The competition between hybridization of ssDNA with its complimentary target and ssDNA probe desorption from the gold surface has been investigated in this paper using X-ray photoelectron spectroscopy, chronocoulometry, fluorescence, and polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The formation of dsDNA on the surface was identified by PM-IRRAS by a dsDNA IR signature at approximately 1678 cm(-)(1) that was confirmed by density functional theory calculations of the nucleotides and the nucleotides' base pairs. The presence of dsDNA through the specific DNA hybridization was additionally confirmed by atomic force microscopy through colloidal gold nanoparticle labeling of the target ssDNA. Using these methods, strand loss was observed even for DNA hybridization performed at 25 degrees C for the DNA monolayers studied here consisting of attachment to the gold surfaces by single Au-S bonds. This finding has significant consequence for the application of SAM technology in the detection of oligonucleotide hybridization on gold surfaces.


Assuntos
DNA/química , Ouro/química , Propriedades de Superfície , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...