Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 104(6): 1793-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22299338

RESUMO

"Corn stunt" caused by the mollicute Spiroplasma kunkelii (Whitcomb) is potentially one of the most severe diseases affecting the corn (Zea mays L.) crop in the Americas, and the leafhopper Dalbulus maidis (DeLong & Wolcott) is considered its most important vector. However, other insects seen quite frequently in corn crops might well be its vectors in Argentina To identify any leafhoppers species other than D. maidis that can transmit S. kunkelii, transmission assays were conducted, using individuals of Exitianus obscurinervis (Stål) collected in field and reared under controlled conditions. S. kunkelii was transmitted to corn plants by E. obscurinervis. The pathogen was transmitted to seven of the 11 plants, which showed characteristic corn stunt symptoms, and the presence of the pathogen was confirmed by DAS-ELISA. The presence of S. kunkelii in the E. obscurinervis individuals used in transmission experiments was confirmed by polymerase chain reaction and electron microscopy. The current study shows the existence of a new experimental vector of S. kunkelii, the leafhopper E. obscurinervis, which acquired spiroplasmas from infected plants and inoculated it to healthy plants.


Assuntos
Hemípteros/microbiologia , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Animais , Argentina , Ensaio de Imunoadsorção Enzimática , Feminino , Hemípteros/fisiologia , Insetos Vetores/fisiologia , Masculino , Microscopia Eletrônica , Reação em Cadeia da Polimerase , Spiroplasma/fisiologia , Zea mays/fisiologia
2.
Arch Virol ; 152(7): 1341-51, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17370108

RESUMO

Viruses of the species Mal de Río Cuarto virus (genus Fijivirus, family Reoviridae) cause significant economic losses in maize in Argentina. Genetic changes in the virus genome leading to better adaptation to diverse ecological conditions were postulated that would account for the increasing MRCV variability. The genomic differences between MRCV isolates from four ecologically different areas (Río Cuarto, RC; Pergamino, P; Jesús María, JM; and Tafí del Valle, TV) were studied. RT-PCR-amplified fragments comprising four genomic segments (Seg1, Seg7, Seg9 and Seg10) of MRCV isolates were compared by RFLPs and nucleotide sequences. The segments were chosen based on the proteins they encode: RNA-dependent-RNA polymerase, proteins putatively associated with tubular structures and viroplasm and the major outer capsid protein, respectively. Genetic comparison suggested that JM and TV isolates were genetically similar, but RC and P were different. Therefore, they were clustered in three genetic groups (JM = TV, RC and P). Together, nucleotide and amino acid sequence identities of the genomic segments were often above 96%. Seg1 was more variable (viral polymerase), whereas Seg7 (putative tubular structure) was the most conserved. Phylogeny analysis showed that MRCV isolates could be clustered in 'mountain area' and 'high production area' groups according to their geographical occurrence.


Assuntos
Reoviridae/genética , Sequência de Aminoácidos , Argentina , Sequência de Bases , Primers do DNA/genética , DNA Viral/genética , Ecossistema , Variação Genética , Genoma Viral , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Polimorfismo de Fragmento de Restrição , RNA Polimerase Dependente de RNA/genética , Reoviridae/classificação , Reoviridae/enzimologia , Reoviridae/isolamento & purificação , Homologia de Sequência de Aminoácidos , Zea mays/virologia
3.
Plant Dis ; 84(9): 1046, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30832015

RESUMO

Symptoms of fine chlorotic stipple-striping of the veins, chlorosis, numerous dots and stripes, formation of holes in the leaf blade, and ears reduced in size, bearing few grains, were observed in maize crops in Tafí del Valle (Tucumán Province), Orán, El Galpón (Salta Province), Tilcara and Yaví (Jujuy Province), the subtropical area of northwest Argentina where the leafhopper vector Dalbulus maidis (DeLong & Wolcott) is present. Maize rayado fino virus (MRFV) was detected in these samples by a positive reaction in double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) using an AGDIA kit. Electron microscopy revealed abundant isometric particles about 30 nm in diameter in the cytoplasm and vacuoles of phloem cells and xylem parenchyma cells. The virus was also detected by reverse transcription polymerase chain reaction (RT-PCR) using a primer pair MRFV-09/MRFV-10. Primers and PCR conditions were as previously described (1). Virus amplification was observed only in samples from symptomatic plants. In 1981 (2), the presence of MRFV in Argentina was revealed by serological assay in plants from temperate central areas. No further reports were released since then. This is the first evidence of MRFV in subtropical areas of Argentina and identification of the virus by combining DAS-ELISA, particle size, relation with plant tissues, and RTPCR. References: (1) R. W. Hammond et al. J. Gen. Virol. 78:3153, 1997. (2) S. F. Nome et al. RIA XIX:257, 1984.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...