Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Immunol ; 125: 104-114, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659595

RESUMO

Leishmania are obligate protozoan parasites responsible for substantial public health problems in tropical and subtropical regions around the world, with L. braziliensis being one of the causative agents of American Tegumentary Leishmaniasis. Macrophages, fundamental cells in the innate inflammatory response against Leishmania, constitute a heterogeneous group with multiple activation phenotypes and functions. The outcome of this infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. The importance of lipids, the major components of cell membranes, goes beyond their basic structural functions. Lipid bioactive molecules have been described in Leishmania spp., and in the recent years the knowledge about the biological relevance of lipids in particular and their relationship with the immune response is expanding. The present work analyzes the biological effects of L. braziliensis lipids from lysed promastigotes (PRO) to mimic rapid modulatory processes that could occur in the initial steps of infection or the effects of lipids from lysed and incubated promastigotes (PROinc), simulating the parasite lipid degradation processes triggered after parasite lysis that might occur in the mammalian host. To perform these studies, lipid profiles of PRO and PROinc were compared with lipids from amastigotes under similar conditions (AMA and AMAinc), and the effect of these lipid extracts were analyzed on the induction of an inflammatory response in murine peritoneal macrophages: LB induction, COX-2, iNOS and Arginase expression, TNF-α, IL-10 and NO production, Arginase activity and M1/M2 markers mRNA induction.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania braziliensis/imunologia , Leishmaniose/imunologia , Lipídeos/imunologia , Ativação de Macrófagos/imunologia , Animais , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C
2.
Microb Pathog ; 141: 104010, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32004623

RESUMO

Leishmaniasis is caused by several species of protozoan parasites of the genus Leishmania and represents an important global health problem. Leishmania braziliensis in particular is responsible of cutaneous and mucocutaneous forms of this parasitosis, with prevalence in Latin America. In the present work, we describe in L. braziliensis promastigotes and amastigotes the presence of a Phospholipase A1 (PLA1) activity, an enzyme that catalyses extensive deacylation of phospholipids like phosphatidylcholine. In order to deepen the knowledge about L. braziliensis PLA1, the cloning and expression of the gene that codifies for this enzyme was carried out in a baculovirus expression system with the obtaintion of a purified recombinant protein that displayed PLA1 activity. Given that this is the first molecular and functional protein characterization of a PLA1 in the Leishmania genus, we also performed a phylogenetic analysis of this gene throughout 12 species whose genome sequences were available. The results presented here will contribute to increase the knowledge about trypanosome phospholipases, which could be novel and valuable as potential targets to fight neglected diseases like Leishmaniasis.


Assuntos
Leishmania braziliensis , Fosfolipases A1 , Animais , Baculoviridae/genética , Clonagem Molecular/métodos , Expressão Gênica , Genes de Protozoários , América Latina , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Leishmaniose Cutânea/parasitologia , Fosfolipases A1/genética , Fosfolipases A1/isolamento & purificação , Fosfolipases A1/metabolismo , Filogenia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9
3.
Artigo em Inglês | MEDLINE | ID: mdl-29868507

RESUMO

Lipids from microorganisms are ligands of Toll like receptors (TLRs) and modulate the innate immune response. Herein, we analyze in vitro the effect of total lipid extracts from Trypanosoma cruzi amastigotes of RA and K98 strains (with polar biological behavior) on the induction of the inflammatory response and the involvement of TLRs in this process. We demonstrated that total lipid extracts from both strains induced lipid body formation, cyclooxygenase-2 expression and TNF-α and nitric oxide release in macrophages, as well as NF-κB activation and IL-8 release in HEK cells specifically through a TLR2/6 dependent pathway. We also evaluated the inflammatory response induced by total lipid extracts obtained from lysed parasites that were overnight incubated to allow the action of parasite hydrolytic enzymes, such as Phospholipase A1, over endogenous phospholipids. After incubation, these total lipid extracts showed a significantly reduced pro-inflammatory response, which could be attributed to the changes in the content of known bioactive lipid molecules like lysophospholipids and fatty acids, here reported. Moreover, analyses of total fatty acids in each lipid extract were performed by gas chromatography-mass spectrometry. Our results indicate a relevant role of T. cruzi lipids in the induction of a pro-inflammatory response through the TLR2/6 pathway that could contribute to the modulation of the immune response and host survival.


Assuntos
Lipídeos/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 6 Toll-Like/imunologia , Receptores Toll-Like/imunologia , Trypanosoma cruzi/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Ácidos Graxos/imunologia , Células HEK293 , Humanos , Imunidade Inata , Interleucina-8/metabolismo , Gotículas Lipídicas , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosfolipases A1/genética , Fosfolipases A1/metabolismo , Proteínas Recombinantes , Trypanosoma cruzi/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Mol Biochem Parasitol ; 187(2): 77-86, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23275096

RESUMO

Phospholipase A1 (PLA1) has been described in the infective stages of Trypanosoma cruzi as a membrane-bound/secreted enzyme that significantly modified host cell lipid profile with generation of second lipid messengers and concomitant activation of protein kinase C. In the present work we determined higher levels of PLA1 expression in the infective amastigotes and trypomastigotes than in the non-infective epimastigotes of lethal RA strain. In addition, we found similar expression patterns but distinct PLA1 activity levels in bloodstream trypomastigotes from Cvd and RA (lethal) and K98 (non-lethal) T. cruzi strains, obtained at their corresponding parasitemia peaks. This fact was likely due to the presence of different levels of anti-T. cruzi PLA1 antibodies in sera of infected mice, that modulated the enzyme activity. Moreover, these antibodies significantly reduced in vitro parasite invasion indicating the participation of T. cruzi PLA1 in the early events of parasite-host cell interaction. We also demonstrated the presence of lysophospholipase activity in live infective stages that could account for self-protection against the toxic lysophospholipids generated by T. cruzi PLA1 action. At the genome level, we identified at least eight putative genes that codify for T. cruzi PLA1 with high amino acid sequence variability in their amino and carboxy-terminal regions; a putative PLA1 selected gene was cloned and expressed as a recombinant protein that possessed PLA1 activity. Collectively, the results presented here point out at T. cruzi PLA1 as a novel virulence factor implicated in parasite invasion.


Assuntos
Fosfolipases A1/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/patogenicidade , Fatores de Virulência/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Chlorocebus aethiops , Clonagem Molecular , DNA de Protozoário/química , DNA de Protozoário/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Camundongos , Dados de Sequência Molecular , Parasitemia/imunologia , Parasitemia/parasitologia , Fosfolipases A1/genética , Análise de Sequência de DNA , Trypanosoma cruzi/genética , Células Vero , Fatores de Virulência/genética
5.
Mol Immunol ; 47(11-12): 1981-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20537708

RESUMO

Several Trypanosoma cruzi molecules that stimulate macrophages activity were described as Toll-like receptor 2 (TLR2) ligands. Besides, the models of dendritic cells (DC) are poorly characterised. We have previously demonstrated that live-trypomastigotes (Tp) plus lipopolysaccharide (LPS) induce DC with tolerogenic properties that produce high levels of interleukin (IL)-10 and an impaired capacity to induce lymphoproliferation. Here, we show that the regulatory phenotype was observed with heat-killed trypomastigotes (Tphk) stimulation, ruling out DC infection. T. cruzi induced a particular DC activation state increasing LPS-activation of extracellular regulated kinase (ERK) 1/2 and signal transducer and activator of transcription (STAT) 3. Inhibition of ERK down-regulated IL-10 production and restored DC stimulatory capacity, showing the importance of this pathway in the DC modulation. A recent work shows that signalling via TLR4 and TLR2 induces a synergism in anti-inflammatory cytokine production in murine DC. Upon TLR2 and TLR4 stimulation using Pam(3)Cys or LPS and Tphk in DC from TLR2 knock out (KO) or TLR4-mutant mice, we showed that high levels of IL-10 were independent of TLR2 but associated with TLR4 and NF-kappaB signallization. Although sialic acid has been described as a molecule responsible of DC inhibition, we determine that it is not associated with T. cruzi-IL-10 modulatory response. In conclusion, all these findings demonstrate a key role of ERK and TLR4 in association with NF-kappaB in IL-10 modulation induced by T. cruzi and suggest that this regulatory effect involves parasite-DC interactions not described yet.


Assuntos
Células Dendríticas/imunologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Interleucina-10/biossíntese , Receptor 4 Toll-Like/fisiologia , Trypanosoma cruzi/imunologia , Animais , Células Cultivadas , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos , Ácido N-Acetilneuramínico/fisiologia , NF-kappa B/fisiologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Receptor 2 Toll-Like/fisiologia
6.
Parasitol Res ; 105(1): 47-55, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19205738

RESUMO

Previously, we showed that oleic acid (OA) induces Trypanosoma cruzi metacyclogenesis through a signaling pathway involving de novo diacylglycerol biosynthesis and simultaneous protein kinase C (PKC) activation. Herein, we demonstrated that OA also triggers a transient Ca(2+) signal in epimastigotes, necessary for parasite differentiation, that could account for PKC activation. In addition, we found that this free fatty acid (FFA) directly stimulated in vitro the activity of T. cruzi PKC in a dose-response way. We determined the presence of classical and novel PKC isoenzymes that were differentially expressed in the infective amastigotes (alpha and delta) and tripomastigotes (alpha, beta, and gamma) and in the non-infective epimastigotes (alpha, beta, gamma, and delta). We also demonstrated that OA induced in epimastigotes the translocation of PKC alpha, beta, gamma, and delta to the membrane, indicating a selective effect of this FFA. To establish a correlation between T. cruzi metacyclogenesis induced by OA and the activation of a particular PKC isoenzyme, the specific PKC inhibitors Ro 32-0432 and Rottlerin (9-30 nM and 5-35 microM, respectively) were employed. These compounds, even at the lowest concentrations assayed, abrogated both epimastigote differentiation and membrane translocation of PKC beta, gamma, and delta. These findings strongly support a key role for classical and novel PKC isoenzymes in the signaling pathways involved in T. cruzi metacyclogenesis induced by OA.


Assuntos
Morfogênese/efeitos dos fármacos , Ácido Oleico/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Isoenzimas/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência
7.
Vet Immunol Immunopathol ; 119(3-4): 171-9, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17628698

RESUMO

Erythrocytes of bovines and other ruminants have a strikingly anomalous phospholipid composition, with low or absent phosphatidylcholine (PC) together with high sphingomyelin (SM) content. Here, we report the presence in normal bovine serum of high levels of anti-phospholipid antibodies of IgM isotype against, PC and the phosphono analogue of phosphatidylethanolamine, aminoethylphosphonolipid (AEPL), normally produced by rumen ciliates. In contrast, no antibodies were detected against SM or N-acyl-phosphatidylethanolamine (NAPE), the major components of bovine erythrocytes. In addition, we found that exposure of the ciliate Tetrahymena thermophila to bovine serum results in rapid lysis, an effect that was inhibited by adsorption of the serum with SM/AEPL liposomes. Furthermore, incubation with bovine serum had a similar effect on freshly obtained ruminal ciliates, and the lytic activity was eliminated by pre-adsorption of the serum with SM/PE liposomes. The ruminant mode of life with its concomitant ciliate fauna is hereby linked to the peculiar conformation of bovine erythrocyte membranes. We propose that the unique phospholipid composition of bovine erythrocytes appears as an evolutionary adaptation to tolerate the lytic effects of anti-phospholipid antibodies generated against AEPL, a membrane component of the huge mass of ruminal ciliates, necessary commensals of this group of mammals.


Assuntos
Anticorpos Antifosfolipídeos/imunologia , Bovinos/imunologia , Cilióforos/imunologia , Membrana Eritrocítica/química , Membrana Eritrocítica/imunologia , Rúmen/parasitologia , Animais , Membrana Eritrocítica/metabolismo , Hemólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...