Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980331

RESUMO

Proquinazid is a new-generation fungicide authorized in the EU for combating powdery mildew infections in high-value crops. Due to the perishable nature of fruits, alternative analytical methods are necessary to protect consumer's health from pesticide residues. Currently, immunoassays are a well-established approach for rapidly monitoring chemical contaminants. However, the production of high-quality immunoreagents, such as antibodies and bioconjugates, is essential. This study presents a newly designed hapten that maintains the characteristic moieties of proquinazid unmodified. The linear aliphatic substituents of this molecule were used to introduce the spacer arm. A three-step synthesis strategy was optimized to prepare a hapten that displays the entire 6-iodoquinazolin-4(3H)-one moiety with excellent yields. The N-hydroxysuccimidyl ester of the hapten was activated and purified to prepare a protein conjugate with high hapten density, which was used as an immunogen. Antibodies were raised and competitive enzyme-linked immunosorbent assays were developed. To enhance the assay's sensitivity, two additional heterologous haptens were prepared by modifying the halogenated substituent at C-6. The optimized assays demonstrated low limits of detection in buffer, approximately 0.05 µg/L. When applied to the analysis of proquinazid in QuEChERS extracts of strawberry samples, the immunoassays produced precise and accurate results, particularly in the 10-1000 µg/kg range.

2.
BMC Pediatr ; 19(1): 140, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053102

RESUMO

BACKGROUND: Early microbial colonization is a relevant aspect in human health. Altered microbial colonization patterns have been linked to an increased risk of non-communicable diseases (NCDs). Advances in understanding host-microbe interactions highlight the pivotal role of maternal microbiota on infant health programming. This birth cohort is aimed to characterize the maternal microbes transferred to neonates during the first 1000 days of life, as well as to identify the potential host and environmental factors, such as gestational age, mode of delivery, maternal/infant diet, and exposure to antibiotics, which affect early microbial colonization. METHODS: MAMI is a prospective mother-infant birth cohort in the Spanish-Mediterranean area. Mothers were enrolled at the end of pregnancy and families were follow-up during the first years of life. Maternal-infant biological samples were collected at several time points from birth to 24 months of life. Clinical and anthropometric characteristics and dietary information is available. Specific qPCR and 16S rRNA gene sequencing as well as short chain fatty acid (SCFAs) profile would be obtained. Multivariable models will be used to identy associations between microbiota and clinical and anthropometric data controlling for confounders. MAMI would contribute to a better understanding of the interaction between diet, microbiota and host response in early life health programming, enabling new applications in the field of personalized nutrition and medicine. TRIAL REGISTRATION: The study is registered on the ClinicalTrial.gov platform NCT03552939. (June 12, 2018).


Assuntos
Aleitamento Materno , Dieta , Saúde do Lactente , Monitorização Fisiológica/métodos , Adulto , Fatores Etários , Desenvolvimento Infantil , Estudos de Coortes , DNA/genética , Feminino , Microbioma Gastrointestinal , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Relações Mãe-Filho , Análise Multivariada , Reação em Cadeia da Polimerase/métodos , Estudos Prospectivos , Fatores Sexuais , Espanha
3.
Food Funct ; 10(1): 140-150, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30499575

RESUMO

Human milk, the best food for infants, is a dynamic and complex fluid that directly influences the immune system and microbiota establishment. The protective role of human milk is well known although the mechanisms behind it still need to be uncovered. This study aimed to characterize the impact of human milk in the immature intestine of newborns by analyzing the global transcriptomic response of the FHs 74 int cell line (ATCC CCL-241). The expression of intestinal keratins and other genes with a well-annotated intestinal or epithelial function validated FHs 74 int derived from the fetal small intestine as a model of the intestinal epithelium of newborns. Cells exposed to skimmed human milk showed seventeen differentially expressed genes, most of them up-regulated, including four chemokine genes (CXCL1, CXCL2, CXCL3 and CXCL10) and other immune-related genes. qRT-PCR and ELISA analysis confirmed the microarray data and indicated a different pattern of expression upon milk exposure in FHs 74 int as compared to the adult tumorigenic Caco-2 cell line. The evaluation of the functional significance of these transcriptomic changes reveals that human milk exposure may contribute to the regulation of the inflammatory response in the intestine during the perinatal period, which is characterized by the immaturity of the immune system and a pro-inflammatory phenotype.


Assuntos
Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Leite Humano/metabolismo , Transcriptoma , Células CACO-2 , Linhagem Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Regulação para Cima
4.
Food Funct ; 6(8): 2440-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26130265

RESUMO

Hypertension is one of the most important causes of cardiovascular and renal morbidity and mortality, and it represents a serious health problem in Western countries. Over the last few decades scientific interest in food-derived antihypertensive peptides has grown as an alternative to drugs in the control of systemic blood pressure. Most of these peptides target the angiotensin I-converting enzyme (ACE) but emerging evidence points to other antihypertensive mechanisms beyond ACE inhibition. The milk protein lactoferrin (LF) is a good source of orally active antihypertensive peptides the characterization of which, including ex vivo functional assays and in vivo approaches, shows that they might act on several molecular targets. This review summarizes the mechanisms of action underlying the blood pressure-lowering effects of LF-derived peptides, focusing on their interaction with different components of the renin-angiotensin (RAS) and endothelin (ET) systems. The ability of LF-derived peptides to modify the expression of genes encoding proteins involved in the nitric oxide (NO) pathway and prostaglandin synthesis is also described.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Hipertensão/tratamento farmacológico , Lactoferrina/farmacologia , Peptídeos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Anti-Hipertensivos/química , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Lactoferrina/química , Peptídeos/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo
5.
Arch Toxicol ; 89(4): 555-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24862236

RESUMO

Chronic exposure to inorganic arsenic (As) is associated with type 2 diabetes, cardiovascular diseases and cancer. Ingested inorganic As is transformed within the gastrointestinal tract and can give rise to more toxic species such as monomethylarsonous acid [MMA(III)] and dimethylarsinous acid [DMA(III)]. Thus, the intestinal epithelium comes into contact with toxic arsenical species, and the effects of such exposure upon epithelial function are not clear. The present study has evaluated the effect of 1 µM arsenite [As(III)], 0.1 µM MMA(III) and 1 µM DMA(III) upon the release of cytokines [interleukin-6 (IL6), IL8, tumor necrosis factor alpha (TNFα)], using a compartmentalized co-culture model with differentiated Caco-2 cells in the apical compartment and peripheral blood mononuclear cells in the basolateral compartment. In addition, the combined effect of arsenical species and lipopolysaccharide (LPS), both added into the apical compartment, has been analyzed. The results indicate that exposure to the arsenical forms induces a proinflammatory response. An increase in cytokine secretion into the basolateral compartment was observed, particularly as regards TNFα (up to 1,600 %). The cytokine levels on the apical side also increased, though to a lesser extent. As/LPS co-exposure significantly affected the proinflammatory response as compared to treatment with As alone. Treatment with DMA(III) and As/LPS co-exposure increased the permeability of the intestinal monolayer. In addition, As/LPS treatments enhanced As(III) and MMA(III) transport through the intestinal monolayer.


Assuntos
Arsenicais , Arsenitos/toxicidade , Ácido Cacodílico/análogos & derivados , Citocinas/imunologia , Mucosa Intestinal/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Células CACO-2 , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Interleucina-6/imunologia , Interleucina-6/metabolismo , Interleucina-8/imunologia , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Biochem J ; 439(2): 265-75, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21728993

RESUMO

Lafora progressive myoclonus epilepsy [LD (Lafora disease)] is a fatal autosomal recessive neurodegenerative disorder caused by loss-of-function mutations in either the EPM2A gene, encoding the dual-specificity phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Previously, we and others showed that laforin and malin form a functional complex that regulates multiple aspects of glycogen metabolism, and that the interaction between laforin and malin is enhanced by conditions activating AMPK (AMP-activated protein kinase). In the present study, we demonstrate that laforin is a phosphoprotein, as indicated by two-dimensional electrophoresis, and we identify Ser(25) as the residue involved in this modification. We also show that Ser(25) is phosphorylated both in vitro and in vivo by AMPK. Lastly, we demonstrate that this residue plays a critical role for both the phosphatase activity and the ability of laforin to interact with itself and with previously established binding partners. The results of the present study suggest that phosphorylation of laforin-Ser(25) by AMPK provides a mechanism to modulate the interaction between laforin and malin. Regulation of this complex is necessary to maintain normal glycogen metabolism. Importantly, Ser(25) is mutated in some LD patients (S25P), and our results begin to elucidate the mechanism of disease in these patients.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Lafora/enzimologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Serina/metabolismo , Linhagem Celular , Eletroforese em Gel Bidimensional , Humanos , Modelos Moleculares , Fosforilação , Conformação Proteica , Proteínas Tirosina Fosfatases não Receptoras/química , Técnicas do Sistema de Duplo-Híbrido
7.
J Biol Chem ; 284(13): 8247-55, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19171932

RESUMO

R5/PTG is one of the glycogen targeting subunits of type 1 protein phosphatase, a master regulator of glycogen synthesis. R5/PTG recruits the phosphatase to the places where glycogen synthesis occurs, allowing the activation of glycogen synthase and the inactivation of glycogen phosphorylase, thus increasing glycogen synthesis and decreasing its degradation. In this report, we show that the activity of R5/PTG is regulated by AMP-activated protein kinase (AMPK). We demonstrate that AMPK interacts physically with R5/PTG and modifies its basal phosphorylation status. We have also mapped the major phosphorylation sites of R5/PTG by mass spectrometry analysis, observing that phosphorylation of Ser-8 and Ser-268 increased upon activation of AMPK. We have recently described that the activity of R5/PTG is down-regulated by the laforin-malin complex, composed of a dual specificity phosphatase (laforin) and an E3-ubiquitin ligase (malin). We now demonstrate that phosphorylation of R5/PTG at Ser-8 by AMPK accelerates its laforin/malin-dependent ubiquitination and subsequent proteasomal degradation, which results in a decrease of its glycogenic activity. Thus, our results define a novel role of AMPK in glycogen homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Transporte/metabolismo , Regulação para Baixo/fisiologia , Glicogênio/metabolismo , Complexos Multienzimáticos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Células CHO , Proteínas de Transporte/genética , Cricetinae , Cricetulus , Ativação Enzimática/fisiologia , Glicogênio/genética , Glicogênio Fosforilase/genética , Glicogênio Fosforilase/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multienzimáticos/genética , Fosfoproteínas Fosfatases/genética , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Coelhos , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/fisiologia
8.
FEMS Yeast Res ; 9(1): 52-62, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19016884

RESUMO

The role of the acid trehalase encoded by the ATH1 gene in the yeast Saccharomyces cerevisiae is still unclear. In this work, we investigated the regulation of ATH1 transcription and found a clear involvement of the protein kinase Hog1p in the induction of this gene under severe stress conditions, such as high salt. We also detected changes in the acid trehalase activity and trehalose levels, indicating a role of the acid trehalase in intracellular trehalose mobilization. Finally, the growth analysis for different mutants in neutral and acid trehalases after high salt stress implicates acid trehalase activity in saline stress resistance.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Trealase/metabolismo , Trealose/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pressão Osmótica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Salinidade , Transcrição Gênica , Trealase/genética
9.
ACS Appl Mater Interfaces ; 1(1): 218-23, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20355775

RESUMO

Collagen, as the major structural protein of the extracellular matrix in animals, is a versatile biomaterial of great interest in various engineering applications. Electrospun nanofibers of collagen are regarded as very promising materials for tissue engineering applications because they can reproduce the morphology of the natural bone but have as a drawback a poor structural consistency in wet conditions. In this paper, a comparative study between the performance of different cross-linking methods such as a milder enzymatic treatment procedure using transglutaminase, the use of N-[3-(dimethylamino)propyl]-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide, and genipin, and the use of a physical method based on exposure to ultraviolet light was carried out. The chemical and enzymatic treatments provided, in this order, excellent consistency, morphology, cross-linking degree, and osteoblast viability for the collagen nanofibers. Interestingly, the enzymatically cross-linked collagen mats, which are considered to be a more biological treatment, promoted adequate cell adhesion, making the biomaterial biocompatible and with an adequate degree of porosity for cell seeding and in-growth.


Assuntos
Colágeno/química , Técnicas Eletroquímicas/métodos , Nanofibras/química , Nanotecnologia/métodos , Engenharia Tecidual/métodos , Aminas/metabolismo , Substitutos Ósseos/química , Linhagem Celular Tumoral , Proliferação de Células , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Osteoblastos/citologia , Temperatura , Transglutaminases/metabolismo
10.
Hum Mol Genet ; 17(5): 667-78, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18029386

RESUMO

Lafora progressive myoclonus epilepsy (LD) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. LD is caused by mutations in two genes, EPM2A and EPM2B, encoding respectively laforin, a dual-specificity protein phosphatase, and malin, an E3 ubiquitin ligase. Previously, we and others have suggested that the interactions between laforin and PTG (a regulatory subunit of type 1 protein phosphatase) and between laforin and malin are critical in the pathogenesis of LD. Here, we show that the laforin-malin complex downregulates PTG-induced glycogen synthesis in FTO2B hepatoma cells through a mechanism involving ubiquitination and degradation of PTG. Furthermore, we demonstrate that the interaction between laforin and malin is a regulated process that is modulated by the AMP-activated protein kinase (AMPK). These findings provide further insights into the critical role of the laforin-malin complex in the control of glycogen metabolism and unravel a novel link between the energy sensor AMPK and glycogen metabolism. These data advance our understanding of the functional role of laforin and malin, which hopefully will facilitate the development of appropriate LD therapies.


Assuntos
Proteínas de Transporte/genética , Glicogênio/biossíntese , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Quinases Ativadas por AMP , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares , Escherichia coli/genética , Glicogênio/análise , Proteínas de Fluorescência Verde/metabolismo , Humanos , Rim/citologia , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Estatística como Assunto , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases , Ubiquitinação
11.
Cell Signal ; 18(10): 1702-12, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16624523

RESUMO

AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy charge. Once activated it switches on catabolic pathways and switches off many ATP-consuming processes (anabolic pathways) to preserve the energy status of the cell. In order to identify new targets of AMPK action we have performed a two-hybrid screening of a human pancreas cDNA library. As a result, we have identified TRIP6 as a novel target of AMPK action. This protein belongs to the zyxin family of proteins located at the focal adhesion plaques in the plasma membrane, although they may also travel to the nucleus, where they have regulatory properties. We confirmed the physical interaction between the catalytic subunit (AMPK-alpha2) of the AMPK complex and TRIP6 in mammalian cells by two-hybrid and co-immunoprecipitation assays. We also showed that AMPK was able to phosphorylate in vitro TRIP6 at the N-terminus. Finally, we present evidence that transcriptional co-activator properties of TRIP6 were enhanced by AMPK action.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Adesões Focais/metabolismo , Humanos , Imunoprecipitação , Proteínas com Domínio LIM , Dados de Sequência Molecular , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Especificidade por Substrato , Fatores de Tempo , Fatores de Transcrição/química , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Técnicas do Sistema de Duplo-Híbrido
12.
J Mol Biol ; 333(1): 201-9, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-14516753

RESUMO

We have expressed in yeast the different subunits of AMP-activated protein kinase (AMPK) and, by using the two-hybrid system, we have found a glucose-regulated interaction between alpha 2 catalytic and gamma 1 regulatory subunits. This regulation was not affected by known regulators of the corresponding yeast orthologue, the SNF1 complex, such as Reg1 or Hxk2, but it was affected by deletion of regulatory subunits of yeast type 2A protein phosphatase (PP2A) complex. We have also found that Tpd3 and PR65 alpha, the corresponding yeast and mammalian A subunits of PP2A, interacted with AMPK alpha 2 both in yeast and mammals, respectively. This interaction occurred only through the regulatory domain of this subunit. These results suggested a direct involvement of PP2A complex in regulating the interaction between AMPK alpha 2 and gamma 1 in a glucose-dependent manner.


Assuntos
Glucose/metabolismo , Complexos Multienzimáticos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Deleção de Genes , Fosfoproteínas Fosfatases/genética , Fosforilação , Testes de Precipitina , Saccharomyces cerevisiae/enzimologia , Treonina/metabolismo
13.
Syst Appl Microbiol ; 25(1): 153-61, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12086182

RESUMO

When yeast cells are inoculated into grape must for vinification they find stress conditions because of osmolarity, which is due to very high sugar concentration, and pH lower than 4. In this work an analysis of the expression of three osmotic stress induced genes (GPD1, HSP12 and HSP104) under microvinification conditions is shown as a way to probe those stress situations and the regulatory mechanisms that control them. The results indicate that during the first hours of microvinification there is an increase in the GPDI mRNA levels with a maximum about one hour after inoculation, and a decrease in the amount of HSP12 and HSP104 mRNAs, although with differences between them. The RNA steady-state levels of all the genes considered, and in some cases the microvinification progress are significantly affected by the composition of the must (pH, nature of the osmotic agent and carbon source). These results point out the importance of the control of these parameters and the yeast molecular response during the first hours of vinification for an accurate winemaking process.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Biomarcadores/análise , Sondas de DNA , Fermentação , Glucose/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Proteínas de Choque Térmico/metabolismo , Concentração de Íons de Hidrogênio , Pressão Osmótica , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
14.
Arch Microbiol ; 177(6): 494-9, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12029395

RESUMO

The role of trehalose as cell protector against oxidative stress induced by H(2)O(2) has been studied in Saccharomyces cerevisiae mutants in which the two trehalase genes ATH1 and NTH1 are deleted. The addition of low H(2)O(2) concentrations to proliferating cultures of either strain did not harm cell viability and induced a marked activity to Nth1p, but with no significant level of trehalose accumulation. This pattern was reversed after a more severe H(2)O(2) treatment that caused drastic cell killing. The most severe phenotype corresponded to the Delta nth1 mutant. Under these conditions, the increase in Nth1p was abolished and a three-fold rise in trehalose content was recorded concomitant with activation of the trehalose synthase complex. The behavior of the double-disruptant Delta ath1Delta nth1 mutant was identical to that of wild-type cells, although in exponential cultures Ath1p activity was virtually undetectable upon exposure to H(2)O(2). Furthermore, these strains displayed an adaptive response to oxidative stress that was independent of intracellular trehalose synthesis. Our data strongly suggest that trehalose storage in budding yeasts is not an essential protectant in cell defense against oxidative challenge.


Assuntos
Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Saccharomyces cerevisiae/enzimologia , Trealase/genética , Trealase/fisiologia , Deleção de Genes , Genes Bacterianos , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Trealose/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...