Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Biol ; 35(11): e23943, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37358306

RESUMO

OBJECTIVES: Breastfeeding is an energetically costly and intense form of human parental investment, providing sole-source nutrition in early infancy and bioactive components, including immune factors. Given the energetic cost of lactation, milk factors may be subject to tradeoffs, and variation in concentrations have been explored utilizing the Trivers-Willard hypothesis. As human milk immune factors are critical to developing immune system and protect infants against pathogens, we tested whether concentrations of milk immune factors (IgA, IgM, IgG, EGF, TGFß2, and IL-10) vary in response to infant sex and maternal condition (proxied by maternal diet diversity [DD] and body mass index [BMI]) as posited in the Trivers-Willard hypothesis and consider the application of the hypothesis to milk composition. METHODS: We analyzed concentrations of immune factors in 358 milk samples collected from women residing in 10 international sites using linear mixed-effects models to test for an interaction between maternal condition, including population as a random effect and infant age and maternal age as fixed effects. RESULTS: IgG concentrations were significantly lower in milk produced by women consuming diets with low diversity with male infants than those with female infants. No other significant associations were identified. CONCLUSIONS: IgG concentrations were related to infant sex and maternal diet diversity, providing minimal support for the hypothesis. Given the lack of associations across other select immune factors, results suggest that the Trivers-Willard hypothesis may not be broadly applied to human milk immune factors as a measure of maternal investment, which are likely buffered against perturbations in maternal condition.


Assuntos
Leite Humano , Estado Nutricional , Feminino , Lactente , Masculino , Humanos , Lactação/fisiologia , Aleitamento Materno , Fatores Imunológicos , Imunoglobulina G
2.
Front Immunol ; 11: 614372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643297

RESUMO

Breastfeeding provides defense against infectious disease during early life. The mechanisms underlying this protection are complex but likely include the vast array of immune cells and components, such as immunoglobulins, in milk. Simply characterizing the concentrations of these bioactives, however, provides only limited information regarding their potential relationships with disease risk in the recipient infant. Rather, understanding pathogen and antigen specificity profiles of milk-borne immunoglobulins might lead to a more complete understanding of how maternal immunity impacts infant health and wellbeing. Milk produced by women living in 11 geographically dispersed populations was applied to a protein microarray containing antigens from 16 pathogens, including diarrheagenic E. coli, Shigella spp., Salmonella enterica serovar Typhi, Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis and other pathogens of global health concern, and specific IgA and IgG binding was measured. Our analysis identified novel disease-specific antigen responses and suggests that some IgA and IgG responses vary substantially within and among populations. Patterns of antibody reactivity analyzed by principal component analysis and differential reactivity analysis were associated with either lower-to-middle-income countries (LMICs) or high-income countries (HICs). Antibody levels were generally higher in LMICs than HICs, particularly for Shigella and diarrheagenic E. coli antigens, although sets of S. aureus, S. pneumoniae, and some M. tuberculosis antigens were more reactive in HICs. Differential responses were typically specific to canonical immunodominant antigens, but a set of nondifferential but highly reactive antibodies were specific to antigens possibly universally recognized by antibodies in human milk. This approach provides a promising means to understand how breastfeeding and human milk protect (or do not protect) infants from environmentally relevant pathogens. Furthermore, this approach might lead to interventions to boost population-specific immunity in at-risk breastfeeding mothers and their infants.


Assuntos
Especificidade de Anticorpos/imunologia , Bactérias/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Leite Humano/imunologia , Bactérias/patogenicidade , Aleitamento Materno , Estudos de Coortes , Escherichia coli/imunologia , Etiópia/epidemiologia , Feminino , Gâmbia/epidemiologia , Gana/epidemiologia , Humanos , Quênia/epidemiologia , Mycobacterium tuberculosis/imunologia , Peru/epidemiologia , Análise de Componente Principal , Análise Serial de Proteínas , Proteoma , Salmonella enterica/imunologia , Shigella/imunologia , Espanha/epidemiologia , Staphylococcus aureus/imunologia , Streptococcus pneumoniae/imunologia , Suécia/epidemiologia , Estados Unidos/epidemiologia
3.
Am J Phys Anthropol ; 169(3): 526-539, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31012086

RESUMO

OBJECTIVES: Establishment and development of the infant gastrointestinal microbiome (GIM) varies cross-culturally and is thought to be influenced by factors such as gestational age, birth mode, diet, and antibiotic exposure. However, there is little data as to how the composition of infants' households may play a role, particularly from a cross-cultural perspective. Here, we examined relationships between infant fecal microbiome (IFM) diversity/composition and infants' household size, number of siblings, and number of other household members. MATERIALS AND METHODS: We analyzed 377 fecal samples from healthy, breastfeeding infants across 11 sites in eight different countries (Ethiopia, The Gambia, Ghana, Kenya, Peru, Spain, Sweden, and the United States). Fecal microbial community structure was determined by amplifying, sequencing, and classifying (to the genus level) the V1-V3 region of the bacterial 16S rRNA gene. Surveys administered to infants' mothers identified household members and composition. RESULTS: Our results indicated that household composition (represented by the number of cohabitating siblings and other household members) did not have a measurable impact on the bacterial diversity, evenness, or richness of the IFM. However, we observed that variation in household composition categories did correspond to differential relative abundances of specific taxa, namely: Lactobacillus, Clostridium, Enterobacter, and Klebsiella. DISCUSSION: This study, to our knowledge, is the largest cross-cultural study to date examining the association between household composition and the IFM. Our results indicate that the social environment of infants (represented here by the proxy of household composition) may influence the bacterial composition of the infant GIM, although the mechanism is unknown. A higher number and diversity of cohabitants and potential caregivers may facilitate social transmission of beneficial bacteria to the infant gastrointestinal tract, by way of shared environment or through direct physical and social contact between the maternal-infant dyad and other household members. These findings contribute to the discussion concerning ways by which infants are influenced by their social environments and add further dimensionality to the ongoing exploration of social transmission of gut microbiota and the "old friends" hypothesis.


Assuntos
Bactérias , Características da Família/etnologia , Microbioma Gastrointestinal/genética , Adolescente , Adulto , África , América , Antropologia Física , Bactérias/classificação , Bactérias/genética , Aleitamento Materno , Comparação Transcultural , Europa (Continente) , Fezes/microbiologia , Humanos , Lactente , Recém-Nascido , Mães , Irmãos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...