Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1390066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863677

RESUMO

Phenoxy radical coupling reactions are widely used in nature for the synthesis of complex molecules such as lignin. Their use in the laboratory has great potential for the production of high value compounds from the polyphenol family. While the enzymes responsible for the generation of the radicals are well known, the behavior of the latter is still enigmatic and difficult to control in a reaction flask. Previous work in our laboratory using the enzymatic secretome of B. cinerea containing laccases has shown that incubation of stilbenes leads to dimers, while incubation of phenylpropanoids leads to dimers as well as larger coupling products. Building on these previous studies, this paper investigates the role of different structural features in phenoxy radical couplings. We first demonstrate that the presence of an exocyclic conjugated double bond plays a role in the generation of efficient reactions. In addition, we show that the formation of phenylpropanoid trimers and tetramers can proceed via a decarboxylation reaction that regenerates this reactive moiety. Lastly, this study investigates the reactivity of other phenolic compounds: stilbene dimers, a dihydro-stilbene, a 4-O-methyl-stilbene and a simple phenol with the enzymatic secretome of B. cinerea. The observed efficient dimerization reactions consistently correlate with the presence of a para-phenol conjugated to an exocyclic double bond. The absence of this structural feature leads to variable results, with some compounds showing low conversion or no reaction at all. This research has allowed the development of a controlled method for the synthesis of specific dimers and tetramers of phenylpropanoid derivatives and novel stilbene derivatives, as well as an understanding of features that can promote efficient radical coupling reactions.

2.
Nat Microbiol ; 9(2): 336-345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316926

RESUMO

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Humanos , Metabolômica/métodos , Bases de Dados Factuais
3.
Med Mycol ; 61(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930839

RESUMO

Aspergillus fumigatus is a fungal species causing diverse diseases in humans. The use of azoles for treatments of A. fumigatus diseases has resulted in azole resistance. Azoles are also widely used in the environment for crop protection, which resulted in azole resistance. Resistance is primarily due to mutations in cyp51A, which encodes the target protein for azoles. Here we addressed the occurrence of azole resistance in soils from a vast part of Switzerland. We aimed to associate the use of azoles in the environment with the occurrence of azole resistance. We targeted sample sites from different agricultural environments as well as sites with no agricultural practice (natural sites and urban sites). Starting from 327 sites, 113 A. fumigatus isolates were recovered (2019-2021), among which 19 were azole-resistant (15 with TR34/L98H and four with TR46/Y121F/T289A resistance mutations in cyp51A). Our results show that azole resistance was not associated with a specific agricultural practice. Azoles could be chemically detected in investigated soils, however, their presence was not associated with the occurrence of azole-resistant isolates. Interestingly, genetic markers of resistance to other fungicides were detected but only in azole-resistant isolates, thus reinforcing the notion that A. fumigatus cross-resistance to fungicides has an environmental origin. In conclusion, this study reveals the spreading of azole resistance in A. fumigatus from the environment in Switzerland. The proximity of agricultural areas to urban centers may facilitate the transmission of resistant strains to at-risk populations. Thus, vigilant surveillance is required to maintain effective treatment options for aspergillosis.


Aspergillus fumigatus is ubiquitous and causes diseases in humans. Antifungal drugs, and especially azoles, are used to combat A. fumigatus. Azoles are widely used in the environment, which exposes A. fumigatus and results in azole resistance. Azole resistance was investigated in Switzerland.


Assuntos
Aspergillus fumigatus , Fungicidas Industriais , Humanos , Azóis/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Solo , Suíça , Proteínas Fúngicas/genética , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana/veterinária
5.
Sci Rep ; 13(1): 15986, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749179

RESUMO

Stilbene dimers are well-known for their diverse biological activities. In particular, previous studies have demonstrated the high antibacterial potential of a series of trans-δ-viniferin-related compounds against gram-positive bacteria such as Staphylococcus aureus. The trans-δ-viniferin scaffold has multiple chemical functions and can therefore be modified in various ways to generate derivatives. Here we report the synthesis of 40 derivatives obtained by light isomerization, O-methylation, halogenation and dimerization of other stilbene monomers. The antibacterial activities of all generated trans-δ-viniferin derivatives were evaluated against S. aureus and information on their structure-activity relationships (SAR) was obtained using a linear regression model. Our results show how several parameters, such as the O-methylation pattern and the presence of halogen atoms at specific positions, can determine the antibacterial activity. Taken together, these results can serve as a starting point for further SAR investigations.


Assuntos
Benzofuranos , Staphylococcus aureus , Antibacterianos/farmacologia , Benzofuranos/farmacologia , Dimerização
6.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549001

RESUMO

Despite the fact that Cladosporium sp. are ubiquitous fungi, their viromes have been little studied. By analysing a collection of Cladosporium fungi, two new partitiviruses named Cladosporium cladosporioides partitivirus 1 (CcPV1) and Cladosporium cladosporioides partitivirus 2 (CcPV2) co-infecting a strain of Cladosporium cladosporioides were identified. Their complete genome consists of two monocistronic dsRNA segments (RNA1 and RNA2) with a high percentage of pairwise identity on 5' and 3' end. The RNA directed RNA polymerase (RdRp) of both viruses and the capsid protein (CP) of CcPV1 display the classic characteristics required for their assignment to the Gammapartitivirus genus. In contrast, CcPV2 RNA2 encodes for a 41 KDa CP that is unusually smaller when aligned to CPs of other viruses classified in this genus. The structural role of this protein is confirmed by electrophoresis on acrylamide gel of purified viral particles. Despite the low percentage of identity between the capsid proteins of CcPV1 and CcPV2, their three-dimensional structures predicted by AlphaFold2 show strong similarities and confirm functional proximity. Fifteen similar viral sequences of unknown function were annotated using the CcPV2 CP sequence. The phylogeny of the CP was highly consistent with the phylogeny of their corresponding RdRp, supporting the organization of Gammapartitiviruses into three distinct clades despite stretching the current demarcation criteria. It is proposed that a new subgenus be created within the genus Gammapartitivirus for this new group.


Assuntos
Micovírus , Vírus de RNA , Cladosporium/genética , Micovírus/genética , Vírus de RNA/genética , Proteínas do Capsídeo/genética , Fungos , RNA Polimerase Dependente de RNA/genética
7.
Res Sq ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577622

RESUMO

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37424340

RESUMO

BACKGROUND: An endophytic fungal strain Penicillium crustosum was isolated from the seagrass Posidonia oceanica and investigated to identify its antimicrobial constituents and characterize its metabolome composition. The ethyl acetate extract of this fungus exhibited antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) as well as an anti-quorum sensing effect against Pseudomonas aeruginosa. METHODS: The crude extract was profiled by UHPLC-HRMS/MS and the dereplication was assisted by feature-based molecular networking. As a result, more than twenty compounds were annotated in this fungus. To rapidly identify the active compounds, the enriched extract was fractionated by semi-preparative HPLC-UV applying a chromatographic gradient transfer and dry load sample introduction to maximise resolution. The collected fractions were profiled by 1H-NMR and UHPLC-HRMS. RESULTS: The use of molecular networking-assisted UHPLC-HRMS/MS dereplication allowed preliminary identification of over 20 compounds present in the ethyl acetate extract of P. crustosum. The chromatographic approach significantly accelerated the isolation of the majority of compounds present in the active extract. The one-step fractionation allowed the isolation and identification of eight compounds (1-8). CONCLUSION: This study led to the unambiguous identification of eight known secondary metabolites as well as the determination of their antibacterial properties.

9.
Biomed Pharmacother ; 163: 114825, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148860

RESUMO

Over the last century, the number of epidemics caused by RNA viruses has increased and the current SARS-CoV-2 pandemic has taught us about the compelling need for ready-to-use broad-spectrum antivirals. In this scenario, natural products stand out as a major historical source of drugs. We analyzed the antiviral effect of 4 stilbene dimers [1 (trans-δ-viniferin); 2 (11',13'-di-O-methyl-trans-δ-viniferin), 3 (11,13-di-O-methyl-trans-δ-viniferin); and 4 (11,13,11',13'-tetra-O-methyl-trans-δ-viniferin)] obtained from plant substrates using chemoenzymatic synthesis against a panel of enveloped viruses. We report that compounds 2 and 3 display a broad-spectrum antiviral activity, being able to effectively inhibit several strains of Influenza Viruses (IV), SARS-CoV-2 Delta and, to some extent, Herpes Simplex Virus 2 (HSV-2). Interestingly, the mechanism of action differs for each virus. We observed both a direct virucidal and a cell-mediated effect against IV, with a high barrier to antiviral resistance; a restricted cell-mediated mechanism of action against SARS-CoV-2 Delta and a direct virustatic activity against HSV-2. Of note, while the effect was lost against IV in tissue culture models of human airway epithelia, the antiviral activity was confirmed in this relevant model for SARS-CoV-2 Delta. Our results suggest that stilbene dimer derivatives are good candidate models for the treatment of enveloped virus infections.


Assuntos
COVID-19 , Estilbenos , Vírus , Humanos , Antivirais/uso terapêutico , SARS-CoV-2 , Estilbenos/farmacologia , Herpesvirus Humano 2
10.
Sci Total Environ ; 881: 163371, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044339

RESUMO

Unmanned aerial spraying systems (UASS), i.e., unmanned aerial vehicles designed for pesticide applications, are widely used in East Asia and increasingly prevalent in other regions of the world, including North America and Europe. However, according to a recent report of the Organization for Economic Co-operation and Development, spray drift and exposure caused by these systems are not yet fully understood. In particular, there are at present no peer-reviewed reports on direct exposure of residents and bystanders to spray drift following UASS applications. This lack of data results in regulatory concerns with respect to the environment and human safety. The objective of this study was to quantify environmental, resident and bystander exposure following the application of a plant protection product to an orchard using a commercial UASS under field conditions. Using a fluorescent tracer, horizontal and vertical downwind drift data were collected and direct exposure of residents and bystanders located downwind the sprayed area to spray drift was quantified using display mannequins equipped with personal air sampling pumps. Spray drift and exposure inversely correlated with sampling height and downwind distance. Furthermore, drift and exposure were strongly influenced by wind speed and direction, albeit hardly affected by the growth stage of the trees. In addition, substantially less tracer was extracted from the filters of the air sampling pumps than from the coveralls worn by mannequins, suggesting that direct resident/bystander exposure to spray drift may predominantly occur via the dermal route. This report provides essential data on UASS spray drift potential that are relevant for environmental and health risk assessments related to these systems. The results are compared to predicted values of current regulatory models and previously reported field data on drift and exposure caused by different spraying equipment.


Assuntos
Agricultura , Praguicidas , Humanos , Agricultura/métodos , Praguicidas/análise , Vento , Medição de Risco , Europa (Continente)
11.
Front Plant Sci ; 14: 1278745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186589

RESUMO

Introduction: In contrast to the dynamics observed in plant/pathogen interactions, endophytic fungi have the capacity to establish enduring associations within their hosts, leading to the development of a mutually beneficial relationship that relies on specialized chemical interactions. Research indicates that the presence of endophytic fungi has the ability to significantly modify the chemical makeup of the host organism. Our hypothesis proposes the existence of a reciprocal exchange of chemical signals between plants and fungi, facilitated by specialized chemical processes that could potentially manifest within the tissues of the host. This research aimed to precisely quantify the portion of the cumulative fungal endophytic community's metabolome detectable within host leaves, and tentatively evaluate its relevance to the host-endophyte interplay. The understory palm Astrocaryum sciophilum (Miq.) Pulle was used as a interesting host plant because of its notable resilience and prolonged life cycle, in a tropical ecosystem. Method: Using advanced metabolome characterization, including UHPLC-HRMS/MS and molecular networking, the study explored enriched metabolomes of both host leaves and 15 endophytic fungi. The intention was to capture a metabolomic "snapshot" of both host and endophytic community, to achieve a thorough and detailed analysis. Results and discussion: This approach yielded an extended MS-based molecular network, integrating diverse metadata for identifying host- and endophyte-derived metabolites. The exploration of such data (>24000 features in positive ionization mode) enabled effective metabolome comparison, yielding insights into cultivable endophyte chemodiversity and occurrence of common metabolites between the holobiont and its fungal communities. Surprisingly, a minor subset of features overlapped between host leaf and fungal samples despite significant plant metabolome enrichment. This indicated that fungal metabolic signatures produced in vitro remain sparingly detectable in the leaf. Several classes of primary metabolites were possibly shared. Specific fungal metabolites and/or compounds of their chemical classes were only occasionally discernible in the leaf, highlighting endophytes partial contribution to the overall holobiont metabolome. To our knowledge, the metabolomic study of a plant host and its microbiome has rarely been performed in such a comprehensive manner. The general analytical strategy proposed in this paper seems well-adapted for any study in the field of microbial- or microbiome-related MS and can be applied to most host-microbe interactions.

12.
Microbiol Spectr ; 10(6): e0251322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409146

RESUMO

The evolution of sequencing technology and multiplexing has rapidly expanded our ability to characterize fungal diversity in the environment. However, obtaining an unbiased assessment of the fungal community using ribosomal markers remains challenging. Longer amplicons were shown to improve taxonomic resolution and resolve ambiguities by reducing the risk of spurious operational taxonomic units. We examined the implications of barcoding strategies by amplifying and sequencing two ribosomal DNA fragments. We analyzed the performance of the full internal transcribed spacer (ITS) and a longer fragment including also a part of the 28S ribosomal subunit replicated on 60 grapevine trunk core samples. Grapevine trunks harbor highly diverse fungal communities with implications for disease development. Using identical handling, amplification, and sequencing procedures, we obtained higher sequencing depths for the shorter ITS amplicon. Despite the more limited access to polymorphism, the overall diversity in amplified sequence variants was higher for the shorter ITS amplicon. We detected no meaningful bias in the phylogenetic composition due to the amplicon choice across analyzed samples. Despite the increased resolution of the longer ITS-28S amplicon, the higher and more consistent yields of the shorter amplicons produced a clearer resolution of the fungal community of grapevine stem samples. Our study highlights that the choice of ribosomal amplicons should be carefully evaluated and adjusted according to specific goals. IMPORTANCE Surveying fungal communities is key to our understanding of ecological functions of diverse habitats. Fungal communities can inform about the resilience of agricultural ecosystems, risks to human health, and impacts of pathogens. Community compositions are typically analyzed using ribosomal DNA sequences. Due to technical limitations, most fungal community surveys were based on amplifying a short but highly variable fragment. Advances in sequencing technology enabled the use of longer fragments that can address some limitations of species identification. In this study, we examined the implications of choosing either a short or long ribosomal sequence fragment by replicating the analyses on 60 grapevine wood core samples. Using highly accurate long-read sequencing, we found that the shorter fragment produced substantially higher yields. The shorter fragment also revealed more sequence and species diversity. Our study highlights that the choice of ribosomal amplicons should be carefully evaluated and adjusted according to specific goals.


Assuntos
Micobioma , Vitis , DNA Fúngico/genética , DNA Ribossômico/genética , Ecossistema , Fungos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Micobioma/genética , Filogenia , Vitis/microbiologia
13.
Microorganisms ; 10(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893568

RESUMO

Bacterial volatiles play important roles in mediating beneficial interactions between plants and their associated microbiota. Despite their relevance, bacterial volatiles are mostly studied under laboratory conditions, although these strongly differ from the natural environment bacteria encounter when colonizing plant roots or shoots. In this work, we ask the question whether plant-associated bacteria also emit bioactive volatiles when growing on plant leaves rather than on artificial media. Using four potato-associated Pseudomonas, we demonstrate that potato leaves offer sufficient nutrients for the four strains to grow and emit volatiles, among which 1-undecene and Sulfur compounds have previously demonstrated the ability to inhibit the development of the oomycete Phytophthora infestans, the causative agent of potato late blight. Our results bring the proof of concept that bacterial volatiles with known plant health-promoting properties can be emitted on the surface of leaves and warrant further studies to test the bacterial emission of bioactive volatiles in greenhouse and field-grown plants.

14.
Front Chem ; 10: 912396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711965

RESUMO

A series of complex stilbene dimers have been generated through biotransformation of resveratrol, pterostilbene, and the mixture of both using the enzymatic secretome of Botrytis cinerea Pers. The process starts with achiral molecules and results in the generation of complex molecules with multiple chiral carbons. So far, we have been studying these compounds in the form of enantiomeric mixtures. In the present study, we isolated the enantiomers to determine their absolute configuration and assess if the stereochemistry could impact their biological properties. Eight compounds were selected for this study, corresponding to the main scaffolds generated (pallidol, leachianol, restrytisol and acyclic dimers) and the most active compounds (trans-δ-viniferin derivatives) against a methicillin-resistant strain of Staphylococcus aureus (MRSA). To isolate these enantiomers and determine their absolute configuration, a chiral HPLC-PDA analysis was performed. The analysis was achieved on a high-performance liquid chromatography system equipped with a chiral column. For each compound, the corresponding enantiomeric pair was obtained with high purity. The absolute configuration of each enantiomer was determined by comparison of experimental and calculated electronic circular dichroism (ECD). The antibacterial activities of the four trans-δ-viniferin derivatives against two S. aureus strains were evaluated.

15.
Front Chem ; 10: 881298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518712

RESUMO

The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancer and triple-negative breast cancer (TNBC) in particular depend upon Wnt pathway overactivation. Despite this importance, no Wnt pathway-targeting drugs are currently available, which necessitates novel approaches to search for therapeutically relevant compounds targeting this oncogenic pathway. Stilbene analogs represent an under-explored field of therapeutic natural products research. In the present work, a library of complex stilbene derivatives was obtained through biotransformation of a mixture of resveratrol and pterostilbene using the enzymatic secretome of Botrytis cinerea. To improve the chemodiversity, the reactions were performed using i-PrOH, n-BuOH, i-BuOH, EtOH, or MeOH as cosolvents. Using this strategy, a series of 73 unusual derivatives was generated distributed among 6 scaffolds; 55 derivatives represent novel compounds. The structure of each compound isolated was determined by nuclear magnetic resonance and high-resolution mass spectrometry. The inhibitory activity of the isolated compounds against the oncogenic Wnt pathway was comprehensively quantified and correlated with their capacity to inhibit the growth of the cancer cells, leading to insights into structure-activity relationships of the derivatives. Finally, we have dissected mechanistic details of the stilbene derivatives activity within the pathway.

17.
Front Mol Biosci ; 8: 725691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746230

RESUMO

An endophytic fungal strain isolated from a seagrass endemic to the Mediterranean Sea (Posidonia oceanica) was studied in order to identify its antimicrobial constituents and further characterize the composition of its metabolome. It was identified as Fusarium petroliphilum by in-depth phylogenetic analyses. The ethyl acetate extract of that strain exhibited antimicrobial activities and an ability to inhibit quorum sensing of Staphylococcus aureus. To perform this study with a few tens of mg of extract, an innovative one-step generic strategy was devised. On one side, the extract was analyzed by UHPLC-HRMS/MS molecular networking for dereplication. On the other side, semi-preparative HPLC using a similar gradient profile was used for a single-step high-resolution fractionation. All fractions were systematically profiled by 1H-NMR. The data were assembled into a 2D contour map, which we call "pseudo-LC-NMR," and combined with those of UHPLC-HRMS/MS. This further highlighted the connection within structurally related compounds, facilitated data interpretation, and provided an unbiased quantitative profiling of the main extract constituents. This innovative strategy led to an unambiguous characterization of all major specialized metabolites of that extract and to the localization of its bioactive compounds. Altogether, this approach identified 22 compounds, 13 of them being new natural products and six being inhibitors of the quorum sensing mechanism of S. aureus and Pseudomonas aeruginosa. Minor analogues were also identified by annotation propagation through the corresponding HRMS/MS molecular network, which enabled a consistent annotation of 27 additional metabolites. This approach was designed to be generic and applicable to natural extracts of the same polarity range.

18.
Microorganisms ; 9(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34576706

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is one of the "critical priority pathogens" due to its multidrug resistance to a wide range of antibiotics. Its ability to invade and damage host tissues is due to the use of quorum sensing (QS) to collectively produce a plethora of virulence factors. Inhibition of QS is an attractive strategy for new antimicrobial agents because it disrupts the initial events of infection without killing the pathogen. Highly diverse microorganisms as endophytes represent an under-explored source of bioactive natural products, offering opportunities for the discovery of novel QS inhibitors (QSI). In the present work, the objective was to explore selective QSIs within a unique collection of fungal endophytes isolated from the tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted, and screened for their antibacterial and specific anti-QS activities against P. aeruginosa. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation for its selective activity, leading to the isolation of eight compounds in a single step. Among them, two pyran-derivatives were found to be responsible for the QSI activity, with an effect on some QS-regulated virulence factors. Additional non-targeted metabolomic studies on P. aeruginosa documented their effects on the production of various virulence-related metabolites.

19.
Front Chem ; 9: 664489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458231

RESUMO

The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancers are dependent on Wnt pathway overactivation mostly through dysregulation of pathway component protein expression, which necessitates the search for therapeutically relevant compounds targeting them. Highly diverse microorganisms as endophytes represent an underexplored field in the therapeutic natural products research. In the present work, the objective was to explore the chemical diversity and presence of selective Wnt inhibitors within a unique collection of fungi isolated as foliar endophytes from the long-lived tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted with ethyl acetate, and screened for their effects on the Wnt pathway and cell proliferation. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation based on its selective activity. Application of geometric transfer from analytical HPLC conditions to semi-preparative scale and use of dry load sample introduction enabled the isolation of 15 pure compounds in a single step. Among the molecules identified, five are original natural products described for the first time, and six are new to this species. An active fraction obtained by semi-preparative HPLC was re-purified by UHPLC-PDA using a 1.7 µm phenyl column. 75 injections of 8 µg were necessary to obtain sufficient amounts of each compound for structure elucidation and bioassays. Using this original approach, in addition to the two major compounds, a third minor compound identified as (R)-(-)-5-hydroxymellein (18) was obtained, which was found to be responsible for the significant Wnt inhibition activity recorded. Further studies of this compound and its structural analogs showed that only 18 acts in a highly specific manner, with no acute cytotoxicity. This compound is notably selective for upstream components of the Wnt pathway and is able to inhibit the proliferation of three triple negative breast cancer cell lines. In addition to the discovery of Wnt inhibitors of interest, this study contributes to better characterize the biosynthetic potential of L. venezuelensis.

20.
Front Plant Sci ; 12: 805610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095976

RESUMO

In this study, a series of complex phenylpropanoid derivatives were obtained by chemoenzymatic biotransformation of ferulic acid, caffeic acid, and a mixture of both acids using the enzymatic secretome of Botrytis cinerea. These substrates were incubated with fungal enzymes, and the reactions were monitored using state-of-the-art analytical methods. Under such conditions, a series of dimers, trimers, and tetramers were generated. The reactions were optimized and scaled up. The resulting mixtures were purified by high-resolution semi-preparative HPLC combined with dry load introduction. This approach generated a series of 23 phenylpropanoid derivatives, 11 of which are described here for the first time. These compounds are divided into 12 dimers, 9 trimers (including a completely new structural scaffold), and 2 tetramers. Elucidation of their structures was performed with classical spectroscopic methods such as NMR and HRESIMS analyses. The resulting compound series were analyzed for anti-Wnt activity in TNBC cells, with several derivatives demonstrating specific inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...