Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(2-1): 024608, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109986

RESUMO

Collective motion-or flocking-is an emergent phenomena that underlies many biological processes of relevance, from cellular migrations to animal group movements. In this work, we derive scaling relations for the fluctuations of the mean direction of motion and for the static density structure factor (which encodes static density fluctuations) in the presence of a homogeneous, small external field. This allows us to formulate two different and complementary criteria capable of detecting instances of directed motion exclusively from easily measurable dynamical and static signatures of the collective dynamics, without the need to detect correlations with environmental cues. The static one is informative in large enough systems, while the dynamical one requires large observation times to be effective. We believe these criteria may prove useful to detect or confirm the directed nature of collective motion in in vivo experimental observations, which are typically conducted in complex and not fully controlled environments.

2.
Phys Rev Lett ; 123(21): 218001, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809144

RESUMO

We present a quantitative assessment of the Toner and Tu theory describing the universal scaling of fluctuations in polar phases of dry active matter. Using large-scale simulations of the Vicsek model in two and three dimensions, we find the overall phenomenology and generic algebraic scaling predicted by Toner and Tu, but our data on density correlations reveal some qualitative discrepancies. The values of the associated scaling exponents we estimate differ significantly from those conjectured in 1995. In particular, we identify a large crossover scale beyond which flocks are only weakly anisotropic. We discuss the meaning and consequences of these results.

3.
Phys Rev E ; 100(2-1): 022606, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574647

RESUMO

We study clustering and percolation phenomena in the Vicsek model, taken here in its capacity of prototypical model for dry aligning active matter. Our results show that the order-disorder transition is not related in any way to a percolation transition, contrary to some earlier claims. We study geometric percolation in each of the phases at play, but we mostly focus on the ordered Toner-Tu phase, where we find that the long-range correlations of density fluctuations give rise to an anisotropic percolation transition.

4.
Sci Rep ; 9(1): 10207, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308391

RESUMO

A sufficiently connected topology linking the constituent units of a complex system is usually seen as a prerequisite for the emergence of collective phenomena such as synchronization. We present a random network of heterogeneous phase oscillators in which the links mediating the interactions are constantly rearranged with a characteristic timescale and, possibly, an extremely low instantaneous connectivity. We show that with strong coupling and sufficiently fast rewiring the network reaches partial synchronization even in the vanishing connectivity limit. In particular, we provide an approximate analytical argument, based on the comparison between the different characteristic timescales of our system in the low connectivity regime, which is able to predict the transition to synchronization threshold with satisfactory precision beyond the formal fast rewiring limit. We interpret our results as a qualitative mechanism for emergence of consensus in social communities. In particular, our result suggest that groups of individuals are capable of aligning their opinions under extremely sparse exchanges of views, which is reminiscent of fast communications that take place in the modern social media. Our results may also be relevant to characterize the onset of collective behavior in engineered systems of mobile units with limited wireless capabilities.

5.
Phys Rev E ; 99(1-1): 012303, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780209

RESUMO

We consider a one-dimensional directional array of diffusively coupled oscillators. They are perturbed by the injection of small additive noise, typically orders of magnitude smaller than the oscillation amplitude, and the system is studied in a region of the parameters that would yield deterministic synchronization. Non-normal directed couplings seed a coherent amplification of the perturbation: this latter manifests as a modulation, transversal to the limit cycle, which gains in potency node after node. If the lattice extends long enough, the initial synchrony gets eventually lost, and the system moves toward a nontrivial attractor, which can be analytically characterized as an asymptotic splay state. The noise assisted instability, ultimately vehiculated and amplified by the non-normal nature of the imposed couplings, eventually destabilizes also this second attractor. This phenomenon yields spatiotemporal patterns, which cannot be anticipated by a conventional linear stability analysis.

6.
Phys Rev Lett ; 120(17): 173901, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29756835

RESUMO

Experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics, is provided in a purely temporal optical system. A bistable semiconductor laser, with long-delayed optoelectronic feedback and multiplicative noise, shows the peculiar features of a critical phenomenon belonging to the directed percolation universality class. The numerical study of a simple, effective model provides accurate estimates of the transition critical exponents, in agreement with both theory and our experiment. This result pushes forward a hard equivalence of nontrivial stochastic, long-delayed systems with spatiotemporal ones and opens a new avenue for studying out-of-equilibrium universality classes in purely temporal dynamics.

7.
Phys Rev E ; 97(1-1): 012203, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448446

RESUMO

We discuss the behavior of the largest Lyapunov exponent λ in the incoherent phase of large ensembles of heterogeneous, globally coupled, phase oscillators. We show that the scaling with the system size N depends on the details of the spacing distribution of the oscillator frequencies. For sufficiently regular distributions λ∼1/N, while for strong fluctuations of the frequency spacing λ∼lnN/N (the standard setup of independent identically distributed variables belongs to the latter class). In spite of the coupling being small for large N, the development of a rigorous perturbative theory is not obvious. In fact, our analysis relies on a combination of various types of numerical simulations together with approximate analytical arguments, based on a suitable stochastic approximation for the tangent space evolution. In fact, the very reason for λ being strictly larger than zero is the presence of finite-size fluctuations. We trace back the origin of the logarithmic correction to a weak synchronization between tangent and phase-space dynamics.

8.
Phys Rev E ; 96(2-1): 022308, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950520

RESUMO

A stochastic model of excitatory and inhibitory interactions which bears universality traits is introduced and studied. The endogenous component of noise, stemming from finite size corrections, drives robust internode correlations that persist at large distances. Antiphase synchrony at small frequencies is resolved on adjacent nodes and found to promote the spontaneous generation of long-ranged stochastic patterns that invade the network as a whole. These patterns are lacking under the idealized deterministic scenario, and could provide hints on how living systems implement and handle a large gallery of delicate computational tasks.

9.
Phys Rev E ; 96(6-1): 062313, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29347454

RESUMO

We study a simple stochastic model of neuronal excitatory and inhibitory interactions. The model is defined on a directed lattice and internodes couplings are modulated by a nonlinear function that mimics the process of synaptic activation. We prove that such a system behaves as a fully tunable amplifier: the endogenous component of noise, stemming from finite size effects, seeds a coherent (exponential) amplification across the chain generating giant oscillations with tunable frequencies, a process that the brain could exploit to enhance, and eventually encode, different signals. On a wider perspective, the characterized amplification process could provide a reliable pacemaking mechanism for biological systems. The device extracts energy from the finite size bath and operates as an out of equilibrium thermal machine, under stationary conditions.

10.
Nat Phys ; 12(12): 1153-1157, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27917230

RESUMO

The correlated motion of flocks is an instance of global order emerging from local interactions. An essential difference with analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. The effect of this off-equilibrium element is well studied theoretically, but its impact on actual biological groups deserves more experimental attention. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accodomates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment happens on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.

11.
Proc Natl Acad Sci U S A ; 112(41): 12729-34, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417082

RESUMO

Among the many fascinating examples of collective behavior exhibited by animal groups, some species are known to alternate slow group dispersion in space with rapid aggregation phenomena induced by a sudden behavioral shift at the individual level. We study this phenomenon quantitatively in large groups of grazing Merino sheep under controlled experimental conditions. Our analysis reveals strongly intermittent collective dynamics consisting of fast, avalanche-like regrouping events distributed on all experimentally accessible scales. As a proof of principle, we introduce an agent-based model with individual behavioral shifts, which we show to account faithfully for all collective properties observed. This offers, in turn, an insight on the individual stimulus/response functions that can generate such intermittent behavior. In particular, the intensity of sheep allelomimetic behavior plays a key role in the group's ability to increase the per capita grazing surface while minimizing the time needed to regroup into a tightly packed configuration. We conclude that the emergent behavior reported probably arises from the necessity to balance two conflicting imperatives: (i) the exploration of foraging space by individuals and (ii) the protection from predators offered by being part of large, cohesive groups. We discuss our results in the context of the current debate about criticality in biology.


Assuntos
Comportamento Animal/fisiologia , Ovinos/fisiologia , Comportamento Social , Animais
12.
Phys Rev Lett ; 113(3): 038302, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25083667

RESUMO

We show that dry active nematics, e.g., collections of shaken elongated granular particles, exhibit large-scale spatiotemporal chaos made of interacting dense, ordered, bandlike structures in a parameter region including the linear onset of nematic order. These results are obtained from the study of both the well-known (deterministic) hydrodynamic equations describing these systems and of the self-propelled particle model they were derived from. We prove, in particular, that the chaos stems from the generic instability of the band solution of the hydrodynamic equations. Revisiting the status of the strong fluctuations and long-range correlations in the particle model, we show that the giant number fluctuations observed in the chaotic phase are a trivial consequence of density segregation. However anomalous, curvature-driven number fluctuations are present in the homogeneous quasiordered nematic phase and characterized by a nontrivial scaling exponent.

13.
Artigo em Inglês | MEDLINE | ID: mdl-24827278

RESUMO

We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.

14.
Phys Rev Lett ; 110(16): 168107, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679645

RESUMO

The most conspicuous trait of collective animal behavior is the emergence of highly ordered structures. Less obvious to the eye, but perhaps more profound a signature of self-organization, is the presence of long-range spatial correlations. Experimental data on starling flocks in 3D show that the exponent ruling the decay of the velocity correlation function, C(r)~1/r(γ), is extremely small, γ<<1. This result can neither be explained by equilibrium field theory nor by off-equilibrium theories and simulations of active systems. Here, by means of numerical simulations and theoretical calculations, we show that a dynamical field applied to the boundary of a set of Heisenberg spins on a 3D lattice gives rise to a vanishing exponent γ, as in starling flocks. The effect of the dynamical field is to create an information inflow from border to bulk that triggers long-range spin-wave modes, thus giving rise to an anomalously long-ranged correlation. The biological origin of this phenomenon can be either exogenous-information produced by environmental perturbations is transferred from boundary to bulk of the flock-or endogenous-the flock keeps itself in a constant state of dynamical excitation that is beneficial to correlation and collective response.


Assuntos
Comportamento Animal , Modelos Biológicos , Comportamento Espacial , Animais , Simulação por Computador
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 1): 050101, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23214726

RESUMO

We study a Vicsek-style model of self-propelled particles where ferromagnetic and nematic alignment compete in both the usual "metric" version and in the "metric-free" case where a particle interacts with its Voronoi neighbors. We show that the phase diagram of this out-of-equilibrium XY model is similar to that of its equilibrium counterpart: The properties of the fully nematic model, studied before by Ginelli et al. [Phys. Rev. Lett. 104, 184502 (2010)], are thus robust to the introduction of a modest bias of interactions toward ferromagnetic alignment. The direct transitions between polar and nematic ordered phases are shown to be discontinuous in the metric case, and continuous, belonging to the Ising universality class, in the metric-free version.


Assuntos
Cristais Líquidos/química , Campos Magnéticos , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Conformação Molecular , Tamanho da Partícula , Eletricidade Estática
16.
PLoS Comput Biol ; 8(9): e1002678, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028277

RESUMO

Collective motion phenomena in large groups of social organisms have long fascinated the observer, especially in cases, such as bird flocks or fish schools, where large-scale highly coordinated actions emerge in the absence of obvious leaders. However, the mechanisms involved in this self-organized behavior are still poorly understood, because the individual-level interactions underlying them remain elusive. Here, we demonstrate the power of a bottom-up methodology to build models for animal group motion from data gathered at the individual scale. Using video tracks of fish shoal in a tank, we show how a careful, incremental analysis at the local scale allows for the determination of the stimulus/response function governing an individual's moving decisions. We find in particular that both positional and orientational effects are present, act upon the fish turning speed, and depend on the swimming speed, yielding a novel schooling model whose parameters are all estimated from data. Our approach also leads to identify a density-dependent effect that results in a behavioral change for the largest groups considered. This suggests that, in confined environment, the behavioral state of fish and their reaction patterns change with group size. We debate the applicability, beyond the particular case studied here, of this novel framework for deciphering interactions in moving animal groups.


Assuntos
Comportamento Animal/fisiologia , Tomada de Decisões/fisiologia , Peixes/fisiologia , Modelos Biológicos , Orientação/fisiologia , Comportamento Espacial/fisiologia , Natação/fisiologia , Animais , Simulação por Computador
17.
Phys Rev Lett ; 109(9): 098101, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23002888

RESUMO

We derive a hydrodynamic description of metric-free active matter: starting from self-propelled particles aligning with neighbors defined by "topological" rules, not metric zones-a situation advocated recently to be relevant for bird flocks, fish schools, and crowds-we use a kinetic approach to obtain well-controlled nonlinear field equations. We show that the density-independent collision rate per particle characteristic of topological interactions suppresses the linear instability of the homogeneous ordered phase and the nonlinear density segregation generically present near threshold in metric models, in agreement with microscopic simulations.

18.
Phys Rev Lett ; 109(26): 268701, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368625

RESUMO

We derive a set of minimal and well-behaved nonlinear field equations describing the collective properties of self-propelled rods from a simple microscopic starting point, the Vicsek model with nematic alignment. Analysis of their linear and nonlinear dynamics shows good agreement with the original microscopic model. In particular, we derive an explicit expression for density-segregated, banded solutions, allowing us to develop a more complete analytic picture of the problem at the nonlinear level.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046214, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22181252

RESUMO

We show, using covariant Lyapunov vectors, that the tangent space of spatially extended dissipative systems is split into two hyperbolically decoupled subspaces: one comprising a finite number of frequently entangled "physical" modes, which carry the physically relevant information of the trajectory, and a residual set of strongly decaying "spurious" modes. The decoupling of the physical and spurious subspaces is defined by the absence of tangencies between them and found to take place generally; we find evidence in partial differential equations in one and two spatial dimensions and even in lattices of coupled maps or oscillators. We conjecture that the physical modes may constitute a local linear description of the inertial manifold at any point in the global attractor.

20.
Phys Rev Lett ; 107(12): 124101, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-22026770

RESUMO

Using a combination of analytical and numerical techniques, we show that chaos in globally coupled identical dynamical systems, whether dissipative or Hamiltonian, is both extensive and subextensive: their spectrum of Lyapunov exponents is asymptotically flat (thus extensive) at the value λ(0) given by a single unit forced by the mean field, but sandwiched between subextensive bands containing typically O(logN) exponents whose values vary as λ≃λ(∞)+c/logN with λ(∞)≠λ(0).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...