Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241499

RESUMO

The present study reports on the development by thermoforming of highly sustainable trays based on a bilayer structure composed of paper substrate and a film made of a blend of partially bio-based poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). The incorporation of the renewable succinic acid derived biopolyester blend film slightly improved the thermal resistance and tensile strength of paper, whereas its flexural ductility and puncture resistance were notably enhanced. Furthermore, in terms of barrier properties, the incorporation of this biopolymer blend film reduced the water and aroma vapor permeances of paper by two orders of magnitude, while it endowed the paper structure with intermediate oxygen barrier properties. The resultant thermoformed bilayer trays were, thereafter, originally applied to preserve non-thermally treated Italian artisanal fresh pasta, "fusilli calabresi" type, which was stored under refrigeration conditions for 3 weeks. Shelf-life evaluation showed that the application of the PBS-PBSA film on the paper substrate delayed color changes and mold growth for 1 week, as well as reduced drying of fresh pasta, resulting in acceptable physicochemical quality parameters within 9 days of storage. Lastly, overall migration studies performed with two food simulants demonstrated that the newly developed paper/PBS-PBSA trays are safe since these successfully comply with current legislation on plastic materials and articles intended to come into contact with food.

2.
Front Microbiol ; 14: 1066493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876111

RESUMO

Serine incorporator protein 5 (SERINC5) is a key innate immunity factor that operates in the cell to restrict the infectivity of certain viruses. Different viruses have developed strategies to antagonize SERINC5 function but, how SERINC5 is controlled during viral infection is poorly understood. Here, we report that SERINC5 levels are reduced in COVID-19 patients during the infection by SARS-CoV-2 and, since no viral protein capable of repressing the expression of SERINC5 has been identified, we hypothesized that SARS-CoV-2 non-coding small viral RNAs (svRNAs) could be responsible for this repression. Two newly identified svRNAs with predicted binding sites in the 3'-untranslated region (3'-UTR) of the SERINC5 gene were characterized and we found that the expression of both svRNAs during the infection was not dependent on the miRNA pathway proteins Dicer and Argonaute-2. By using svRNAs mimic oligonucleotides, we demonstrated that both viral svRNAs can bind the 3'UTR of SERINC5 mRNA, reducing SERINC5 expression in vitro. Moreover, we found that an anti-svRNA treatment to Vero E6 cells before SARS-CoV-2 infection recovered the levels of SERINC5 and reduced the levels of N and S viral proteins. Finally, we showed that SERINC5 positively controls the levels of Mitochondrial Antiviral Signalling (MAVS) protein in Vero E6. These results highlight the therapeutic potential of targeting svRNAs based on their action on key proteins of the innate immune response during SARS-CoV-2 viral infection.

3.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985866

RESUMO

In this research, bio-based electrospun multilayered films for food packaging applications with good barrier properties and close to superhydrophobic behavior were developed. For this purpose, two different biopolymers, a low-melting point and fully bio-based synthetic aliphatic copolyamide 1010/1014 (PA1010/1014) and the microbially synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and food-contact-complying organomodified silica (SiO2) nanostructured microparticles, were processed by electrospinning. The production of the multilayer structure was finally obtained by means of a thermal post-treatment, with the aim to laminate all of the components by virtue of the so-called interfiber coalescence process. The so developed fully electrospun films were characterized according to their morphology, their permeance to water vapor and oxygen, the mechanical properties, and their water contact angle properties. Interestingly, the annealed electrospun copolyamide did not show the expected improved barrier behavior as a monolayer. However, when it was built into a multilayer form, the whole assembly exhibited a good barrier, an improved mechanical performance compared to pure PHBV, an apparent water contact angle of ca. 146°, and a sliding angle of 8°. Consequently, these new biopolymer-based multilayer films could be a bio-based alternative to be potentially considered in more environmentally friendly food packaging strategies.

4.
Foods ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36673467

RESUMO

The present work evaluates the food packaging performance of previously developed films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced with atomized microfibrillated cellulose (MFC) compatibilized by a reactive melt-mixing process. To this end, the novel green composite films were originally applied herein as lids in aluminum trays to preserve two dissimilar types of fatty foods, namely minced pork meat and sunflower oil. Results indicated that the PHBV/MFC films effectively preserved the physicochemical and microbiological quality of pork meat for one week of storage at 5 °C. In particular, the compatibilized green composite lid film yielded the lowest weight loss and highest oxidative stability, showing values of 0.935% and 0.78 malonaldehyde (MDA)/kg. Moreover, none of the packaged meat samples exceeded the acceptable Total Aerobial Count (TAC) level of 5 logs colony-forming units (CFU)/g due to the improved barrier properties of the lids. Furthermore, the green composite films successfully prevented sunflower oil oxidation in accelerated oxidative storage conditions for 21 days. Similarly, the compatibilized PHBV/MFC lid film led to the lowest peroxide value (PV) and conjugated diene and triene contents, with respective values of 19.5 meq O2/kg and 2.50 and 1.44 g/100 mL. Finally, the migration of the newly developed PHBV-based films was assessed using two food simulants, proving to be safe since their overall migration levels were in the 1-3 mg/dm2 range and, thus, below the maximum level established by legislation.

5.
Foods ; 12(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231874

RESUMO

Food preservation is a set of procedures and resources aimed at blocking the action of external and internal agents that may alter the original characteristics of food [...].

6.
Polymers (Basel) ; 14(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35808571

RESUMO

Poly(3-hydroxybutyrate-co-3-valerate) (PHBV), being one of the most studied and commercially available polyhydroxyalkanoates (PHAs), presents an intrinsic brittleness and narrow processing window that currently hinders its use in several plastic applications. The aim of this study was to develop a biodegradable PHA-based blend by combining PHBV with poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), another copolyester of the PHA family that shows a more ductile behavior. Blends of PHBV with 20% wt., 30% wt., and 40% wt. of PHBH were obtained by melt mixing, processed by cast extrusion in the form of films, and characterized in terms of their morphology, crystallization behavior, thermal stability, mechanical properties, and thermoformability. Full miscibility of both biopolymers was observed in the amorphous phase due to the presence of a single delta peak, ranging from 4.5 °C to 13.7 °C. Moreover, the incorporation of PHBH hindered the crystallization process of PHBV by decreasing the spherulite growth rate from 1.0 µm/min to 0.3 µm/min. However, for the entire composition range studied, the high brittleness of the resulting materials remained since the presence of PHBH did not prevent the PHBV crystalline phase from governing the mechanical behavior of the blend. Interestingly, the addition of PHBH greatly improved the thermoformability by widening the processing window of PHBV by 7 s, as a result of the increase in the melt strength of the blends even for the lowest PHBH content.

7.
Foods ; 11(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35454748

RESUMO

The present work puts the Circular Bioeconomy's concept into action, originally valorizing residues of spent coffee grains from the beverage liquor coffee industry to develop green composite pieces of polylactide (PLA). The as-received spent coffee grains were first milled to obtain the so-called spent coffee grounds (SCGs) that were, thereafter, incorporated at 20 wt.% into PLA by extrusion. Finally, the resultant green composite pellets were shaped into pieces by injection molding. Moreover, two oligomers of lactic acid (OLAs), namely OLA2 and OLA2mal, the latter being functionalized with maleic anhydride (MAH), were added with SCGs during the extrusion process at 10 wt.%. The results show that, opposite to most claims published in the literature of green composites of PLA, the incorporation of the liquor waste derived SCGs increased the ductility of the pieces by approximately 280% mainly due to their high lipid content. Moreover, the simultaneous addition of OLA2 and OLA2mal further contributed to improve the tensile strength of the green composite pieces by nearly 36% and 60%, respectively. The higher performance of OLA2mal was ascribed to the chemical interaction achieved between the biopolyester and the lignocellulosic fillers by the MAH groups. The resultant green composite pieces are very promising as disposable food-serving utensils and tableware.

8.
Foods ; 11(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159576

RESUMO

In the present study, the effectiveness of a multilayer film of polylactide (PLA), fully bio-based and compostable, was ascertained to develop a novel sustainable packaging solution for the preservation of fresh pork meat. To this end, the multilayer PLA films were first characterized in terms of their thermal characteristics, structure, mechanical performance, permeance to water and aroma vapors and oxygen, and optical properties and, for the first time, compared with two commercial high-barrier multilayer packaging films. Thereafter, the multilayers were thermosealed to package fillets of fresh pork meat and the physicochemical changes, lipid oxidation levels, and microbiological counts were monitored in the food samples during storage under refrigeration conditions. Results showed that the meat fillets packaged in PLA developed a redder color and showed certain indications of dehydration and oxidation, being more noticeably after 11 days of storage, due to the higher water vapor and oxygen permeance values of the biopolymer multilayer. However, the pH changes and bacterial growth in the cold-stored fresh pork meat samples were minimal and very similar in the three tested multilayer films, successfully accomplishing the requirements of the food quality and safety standards at the end of storage.

9.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641470

RESUMO

Framing the Circular Bioeconomy, the use of reactive compatibilizers was applied in order to increase the interfacial adhesion and, hence, the physical properties and applications of green composites based on biopolymers and food waste derived lignocellulosic fillers. In this study, poly(butylene succinate) grafted with maleic anhydride (PBS-g-MAH) was successfully synthetized by a reactive melt-mixing process using poly(butylene succinate) (PBS) and maleic anhydride (MAH) that was induced with dicumyl peroxide (DCP) as a radical initiator and based on the formation of macroradicals derived from the hydrogen abstraction of the biopolymer backbone. Then, PBS-g-MAH was used as reactive compatibilizer for PBS filled with different contents of pistachio shell flour (PSF) during melt extrusion. As confirmed by Fourier transform infrared (FTIR), PBS-g-MAH acted as a bridge between the two composite phases since it was readily soluble in PBS and could successfully form new esters by reaction of its multiple MAH groups with the hydroxyl (-OH) groups present in cellulose or lignin of PSF and the end ones in PBS. The resultant compatibilized green composites were, thereafter, shaped by injection molding into 4-mm thick pieces with a wood-like color. Results showed significant increases in the mechanical and thermomechanical rigidity and hardness, meanwhile variations on the thermal stability were negligible. The enhancement observed was related to the good dispersion and the improved filler-matrix interfacial interactions achieved by PBS-g-MAH and also to the PSF nucleating effect that increased the PBS's crystallinity. Furthermore, water uptake of the pieces progressively increased as a function of the filler content, whereas the disintegration in controlled compost soil was limited due to their large thickness.


Assuntos
Materiais Biocompatíveis/química , Butileno Glicóis/química , Farinha/análise , Anidridos Maleicos/química , Peróxidos/química , Pistacia/química , Polímeros/química , Temperatura , Resistência à Tração
10.
Materials (Basel) ; 14(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34501107

RESUMO

(computer-aided design-computer-aided manufacturing) CAD/CAM monolithic restorations connected to zirconia abutments manufactured with a chairside workflow are becoming a more common restorative option. However, their mechanical performance is still uncertain. The aim of this study was to evaluate the mechanical behavior of a combination of a zirconia abutment and monolithic all-ceramic zirconia and lithium disilicate crown manufactured with a chairside workflow, connected to titanium implants with two types of internal connection-tube in tube connection and conical connection with platform switching. They were thermally cycled from 5 °C to 55 °C and were subjected to a static and fatigue test following ISO 14801. The fractured specimens from the fatigue test were examined by SEM (scanning electron microscopy). Simulations of the stress distribution over the different parts of the restorative complex during the mechanical tests were evaluated by means of (finite element analysis) FEA. The mechanical performance of the zirconia abutment with an internal conical connection was higher than that of the tube in tube connection. Additionally, the use of disilicate or zirconia all-ceramic chairside CAD/CAM monolithic restorations has similar results in terms of mechanical fracture and fatigue resistance. Stress distribution affects the implant/restoration complex depending on the connection design. Zirconia abutments and monolithic restorations seem to be highly reliable in terms of mechanical resistance.

11.
Polymers (Basel) ; 13(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201828

RESUMO

In the present study, poly(ethylene-co-vinyl alcohol) with 44 mol % ethylene content (EVOH44) was managed to be processed, for the first time, by electrospinning assisted by the coaxial technology of solvent jacket. In addition to this, different suspensions of cellulose nanocrystals (CNCs), with contents ranging from 0.1 to 1.0 wt %, were also electrospun to obtain hybrid bio-/non-bio nanocomposites. The resultant fiber mats were thereafter optimally annealed to promote interfiber coalescence at 145 °C, below the EVOH44 melting point, leading to continuous transparent fiber-based films. The morphological analysis revealed the successful distribution of CNCs into EVOH44 up to contents of 0.5 wt %. The incorporation of CNCs into the ethylene-vinyl alcohol copolymer caused a decrease in the crystallization and melting temperatures (TC and Tm) of about 12 and 7 °C, respectively, and also crystallinity. However, the incorporation of CNCs led to enhanced thermal stability of the copolymer matrix for a nanofiller content of 1.0 wt %. Furthermore, the incorporation of 0.1 and 0.5 wt % CNCs produced increases in the tensile modulus (E) of ca. 38% and 28%, respectively, but also yielded a reduction in the elongation at break and toughness. The oxygen barrier of the hybrid nanocomposite fiber-based films decreased with increasing the CNCs content, but they were seen to remain high barrier, especially in the low relative humidity (RH) regime, i.e., at 20% RH, showing permeability values lower than 0.6 × 10-20 m3·m·m-2·Pa-1·s-1. In general terms, an optimal balance in physical properties was found for the hybrid copolymer composite with a CNC loading of 0.1 wt %. On the overall, the present study demonstrates the potential of annealed electrospun fiber-based high-barrier polymers, with or without CNCs, to develop novel barrier interlayers to be used as food packaging constituents.

12.
Nanomaterials (Basel) ; 11(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070946

RESUMO

This study reports on the development and characterization of organic recyclable high-oxygen-barrier multilayer films based on different commercial polyhydroxyalkanoate (PHA) materials, including a blend with commercial poly(butylene adipate-co-terephthalate) (PBAT), which contained an inner layer of cellulose nanocrystals (CNCs) and an electrospun hot-tack adhesive layer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey (CW). As a result, the full multilayer structures were made from bio-based and/or compostable materials. A characterization of the produced films was carried out in terms of morphological, optical, mechanical, and barrier properties with respect to water vapor, limonene, and oxygen. Results indicate that the multilayer films exhibited a good interlayer adhesion and contact transparency. The stiffness of the multilayers was generally improved upon incorporation of the CNC interlayer, whereas the enhanced elasticity of the blend was reduced to some extent in the multilayer with CNCs, but this was still much higher than for the neat PHAs. In terms of barrier properties, it was found that 1 µm of the CNC interlayer was able to reduce the oxygen permeance between 71% and 86%, while retaining the moisture and aroma barrier of the control materials.

13.
Biomacromolecules ; 22(7): 2935-2953, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34133120

RESUMO

In the present study, three different newly developed copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with 20, 40, and 60 mol % contents in 3-hydroxyvalerate (3HV) were produced by the biotechnological process of mixed microbial cultures (MMCs) using cheese whey (CW), a by-product from the dairy industry, as feedstock. The CW-derived PHBV copolyesters were first purified and then processed by solution electrospinning, yielding fibers of approximately 2 µm in cross-section in all cases. The resultant electrospun PHBV mats were, thereafter, post-processed by annealing at different temperatures, below their maximum of melting, selected according to their 3HV content in order to obtain continuous films based on coalesced fibers, so-called biopapers. The resultant PHBV films were characterized in terms of their morphology, crystallinity, and mechanical and barrier properties to assess their potential application in food packaging. The CW-derived PHBV biopapers showed high contact transparency but a slightly yellow color. The fibers of the 20 mol % 3HV copolymer were seen to contain mostly poly(3-hydroxybutyrate) (PHB) crystals, the fibers of the 40 mol % 3HV copolymer a mixture of PHB and poly(3-hydroxyvalerate) (PHV) crystals and lowest crystallinity, and the fibers of the 60 mol % 3HV sample were mostly made of PHV crystals. To understand the interfiber coalesce process undergone by the materials during annealing, the crystalline morphology was also assessed by variable-temperature both combined small-angle and wide-angle X-ray scattering synchrotron and Fourier transform infrared experiments. From these experiments and, different from previously reported biopapers with lower 3HV contents, all samples were inferred to have a surface energy reduction mechanism for interfiber coalescence during annealing, which is thought to be activated by a temperature-induced decrease in molecular order. Due to their reduced crystallinity and molecular order, the CW-derived PHBV biopapers, especially the 40 mol % 3HV sample, were found to be more ductile and tougher. In terms of barrier properties, the three copolymers performed similarly to water and limonene, but to oxygen, the 40 mol % sample showed the highest relative permeability. Overall, the materials developed, which are compatible with the Circular Bioeconomy organic recycling strategy, can have an excellent potential as barrier interlayers or coatings of application interest in food packaging.


Assuntos
Queijo , Soro do Leite , Hidroxibutiratos , Ácidos Pentanoicos , Poliésteres
14.
Biol Direct ; 16(1): 9, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039407

RESUMO

BACKGROUND: Cancer is a major health problem which presents a high heterogeneity. In this work we explore omics data from Breast, Kidney and Lung cancers at different levels as signalling pathways, functions and miRNAs, as part of the CAMDA 2019 Hi-Res Cancer Data Integration Challenge. Our goal is to find common functional patterns which give rise to the generic microenvironment in these cancers and contribute to a better understanding of cancer pathogenesis and a possible clinical translation down further studies. RESULTS: After a tumor versus normal tissue comparison of the signaling pathways and cell functions, we found 828 subpathways, 912 Gene Ontology terms and 91 Uniprot keywords commonly significant to the three studied tumors. Such features interestingly show the power to classify tumor samples into subgroups with different survival times, and predict tumor state and tissue of origin through machine learning techniques. We also found cancer-specific alternative activation subpathways, such as the ones activating STAT5A in ErbB signaling pathway. miRNAs evaluation show the role of miRNAs, such as mir-184 and mir-206, as regulators of many cancer pathways and their value in prognoses. CONCLUSIONS: The study of the common functional and pathway activities of different cancers is an interesting approach to understand molecular mechanisms of the tumoral process regardless of their tissue of origin. The existence of platforms as the CAMDA challenges provide the opportunity to share knowledge and improve future scientific research and clinical practice.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Transdução de Sinais , Transcriptoma , Perfilação da Expressão Gênica , Humanos
15.
Polymers (Basel) ; 13(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916564

RESUMO

In the present study, a new poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) [P(3HB-co-3HV-co-3HHx)] terpolyester with approximately 68 mol% of 3-hydroxybutyrate (3HB), 17 mol% of 3-hydroxyvalerate (3HV), and 15 mol% of 3-hydroxyhexanoate (3HHx) was obtained via the mixed microbial culture (MMC) technology using fruit pulps as feedstock, a processing by-product of the juice industry. After extraction and purification performed in a single step, the P(3HB-co-3HV-co-3HHx) powder was melt-mixed, for the first time, in contents of 10, 25, and 50 wt% with commercial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Thereafter, the resultant doughs were thermo-compressed to obtain highly miscible films with good optical properties, which can be of interest in rigid and semirigid organic recyclable food packaging applications. The results showed that the developed blends exhibited a progressively lower melting enthalpy with increasing the incorporation of P(3HB-co-3HV-co-3HHx), but retained the PHB crystalline morphology, albeit with an inferred lower crystalline density. Moreover, all the melt-mixed blends were thermally stable up to nearly 240 °C. As the content of terpolymer increased in the blends, the mechanical response of their films showed a brittle-to-ductile transition. On the other hand, the permeabilities to water vapor, oxygen, and, more notably, limonene were seen to increase. On the overall, this study demonstrates the value of using industrial biowaste derived P(3HB-co-3HV-co-3HHx) terpolyesters as potentially cost-effective and sustainable plasticizing additives to balance the physical properties of organic recyclable polyhydroxyalkanoate (PHA)-based food packaging materials.

16.
Polymers (Basel) ; 13(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672322

RESUMO

This study focuses on the potential uses in textiles of fibers of soy protein (SP) and chitin, which are naturally occurring polymers that can be obtained from agricultural and food processing by-products and wastes. The as-received natural fibers were first subjected to a three-step manufacturing process to develop yarns that were, thereafter, converted into fabrics by weft knitting. Different characterizations in terms of physical properties and comfort parameters were carried out on the natural fibers and compared to waste derived fibers of coir and also conventional cotton and cotton-based fibers, which are widely used in the textile industry. The evaluation of the geometry and mechanical properties revealed that both SP and chitin fibers showed similar fineness and tenacity values than cotton, whereas coir did not achieve the expected properties to develop fabrics. In relation to the moisture content, it was found that the SP fibers outperformed the other natural fibers, which could successfully avoid variations in the mechanical performance of their fabrics as well as impair the growth of microorganisms. In addition, the antimicrobial activity of the natural fibers was assessed against different bacteria and fungi that are typically found on the skin. The obtained results indicated that the fibers of chitin and also SP, being the latter functionalized with biocides during the fiber-formation process, showed a high antimicrobial activity. In particular, reductions of up to 100% and 60% were attained for the bacteria and fungi strains, respectively. Finally, textile comfort was evaluated on the weft-knitted fabrics of the chitin and SP fibers by means of thermal and tactile tests. The comfort analysis indicated that the thermal resistance of both fabrics was similar to that of cotton, whereas their air permeability was higher, particularly for chitin due to its higher fineness, which makes these natural fibers very promising for summer clothes. Both the SP and chitin fabrics also presented relatively similar values of fullness and softness than the pure cotton fabric in terms of body feeling and richness. However, the cotton/polyester fabric was the only one that achieved a good range for uses in winter-autumn cloths. Therefore, the results of this work demonstrate that non-conventional chitin and SP fibers can be considered as potential candidates to replace cotton fibers in fabrics for the textile industry due to their high comfort and improved sustainability. Furthermore, these natural fibers can also serve to develop novel functional textiles with antimicrobial properties.

17.
Cancers (Basel) ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33526761

RESUMO

While studies have established the existence of differences in the epidemiological and clinical patterns of lung adenocarcinoma between male and female patients, we know relatively little regarding the molecular mechanisms underlying such sex-based differences. In this study, we explore said differences through a meta-analysis of transcriptomic data. We performed a meta-analysis of the functional profiling of nine public datasets that included 1366 samples from Gene Expression Omnibus and The Cancer Genome Atlas databases. Meta-analysis results from data merged, normalized, and corrected for batch effect show an enrichment for Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways related to the immune response, nucleic acid metabolism, and purinergic signaling. We discovered the overrepresentation of terms associated with the immune response, particularly with the acute inflammatory response, and purinergic signaling in female lung adenocarcinoma patients, which could influence reported clinical differences. Further evaluations of the identified differential biological processes and pathways could lead to the discovery of new biomarkers and therapeutic targets. Our findings also emphasize the relevance of sex-specific analyses in biomedicine, which represents a crucial aspect influencing biological variability in disease.

18.
J Prosthet Dent ; 125(3): 503.e1-503.e9, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33243472

RESUMO

STATEMENT OF PROBLEM: Zirconia abutments with a titanium base are promising candidates to substitute for titanium abutments based on clinical studies reporting good short-term survival rates. However, information on the long-term performance of zirconia abutments supporting ceramic crowns is scarce. PURPOSE: This in vitro comparative and finite element analysis study compared the fatigue life performance of ceramic computer-aided design and computer-aided manufacturing (CAD-CAM) monolithic restorations and zirconia abutments fabricated with a chairside workflow connected to a titanium interface versus titanium abutments. MATERIAL AND METHODS: Twenty-two internal connection implants were divided into 2 groups, one with a zirconia abutment and monolithic ceramic zirconia crown (ZZ) and the other with a titanium abutment and zirconia crown (TiZ). They were subjected to a fatigue test to determine the fatigue limit and fatigue performance of each group as per International Organization for Standardization (ISO) 14801. Microstructural analysis of the fracture surfaces was conducted by using a scanning electron microscope (SEM). Simulations of the in vitro study were also conducted by means of finite element analysis (FEA) to assess the stress distribution over the different parts of the restoration. RESULTS: The fatigue limit was 250 N for the TiZ group and 325 N for the ZZ group. In both groups, the screw was the part most susceptible to fatigue and was where the failure initiated. In the zirconia abutment models, the stress on the screw was reduced. CONCLUSIONS: Chairside CAD-CAM zirconia abutments with a titanium base supporting zirconia crowns had higher fatigue fracture resistance compared with that of titanium abutments.


Assuntos
Implantes Dentários , Fraturas de Estresse , Desenho Assistido por Computador , Coroas , Dente Suporte , Projeto do Implante Dentário-Pivô , Falha de Restauração Dentária , Análise do Estresse Dentário , Análise de Elementos Finitos , Humanos , Teste de Materiais , Titânio , Zircônio
19.
Antioxidants (Basel) ; 10(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375591

RESUMO

This study originally explores the use of naringin (NAR), gallic acid (GA), caffeic acid (CA), and quercetin (QUER) as natural antioxidants for bio-based high-density polyethylene (bio-HDPE). These phenolic compounds are present in various citrus fruits and grapes and can remain in their leaves, peels, pulp, and seeds as by-products or wastes after juice processing. Each natural additive was first melt-mixed at 0.8 parts per hundred resin (phr) of bio-HDPE by extrusion and the resultant pellets were shaped into films by thermo-compression. Although all the phenolic compounds colored the bio-HDPE films, their contact transparency was still preserved. The chemical analyses confirmed the successful inclusion of the phenolic compounds in bio-HDPE, though their interaction with the green polyolefin matrix was low. The mechanical performance of the bio-HDPE films was nearly unaffected by the natural compounds, presenting in all cases a ductile behavior. Interestingly, the phenolic compounds successfully increased the thermo-oxidative stability of bio-HDPE, yielding GA and QUER the highest performance. In particular, using these phenolic compounds, the onset oxidation temperature (OOT) value was improved by 43 and 41.5 °C, respectively. Similarly, the oxidation induction time (OIT) value, determined in isothermal conditions at 210 °C, increased from 4.5 min to approximately 109 and 138 min. Furthermore, the onset degradation temperature in air of bio-HDPE, measured for the 5% of mass loss (T5%), was improved by up to 21 °C after the addition of NAR. Moreover, the GA- and CA-containing bio-HDPE films showed a high antioxidant activity in alcoholic solution due to their favored release capacity, which opens up novel opportunities in active food packaging. The improved antioxidant performance of these phenolic compounds was ascribed to the multiple presence of hydroxyl groups and aromatic heterocyclic rings that provide these molecules with the features to permit the delocalization and the scavenging of free radicals. Therefore, the here-tested phenolic compounds, in particular QUER, can represent a sustainable and cost-effective alternative of synthetic antioxidants in polymer and biopolymer formulations, for which safety and environmental issues have been raised over time.

20.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260904

RESUMO

Active multilayer films based on polyhydroxyalkanoates (PHAs) with and without high barrier coatings of cellulose nanocrystals (CNCs) were herein successfully developed. To this end, an electrospun antimicrobial hot-tack layer made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey, a by-product from the dairy industry, was deposited on a previously manufactured blown film of commercial food contact PHA-based resin. A hybrid combination of oregano essential oil (OEO) and zinc oxide nanoparticles (ZnONPs) were incorporated during the electrospinning process into the PHBV nanofibers at 2.5 and 2.25 wt%, respectively, in order to provide antimicrobial properties. A barrier CNC coating was also applied by casting from an aqueous solution of nanocellulose at 2 wt% using a rod at 1m/min. The whole multilayer structure was thereafter assembled in a pilot roll-to-roll laminating system, where the blown PHA-based film was located as the outer layers while the electrospun antimicrobial hot-tack PHBV layer and the barrier CNC coating were placed as interlayers. The resultant multilayer films, having a final thickness in the 130-150 µm range, were characterized to ascertain their potential in biodegradable food packaging. The multilayers showed contact transparency, interlayer adhesion, improved barrier to water and limonene vapors, and intermediate mechanical performance. Moreover, the films presented high antimicrobial and antioxidant activities in both open and closed systems for up to 15 days. Finally, the food safety of the multilayers was assessed by migration and cytotoxicity tests, demonstrating that the films are safe to use in both alcoholic and acid food simulants and they are also not cytotoxic for Caco-2 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...