Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Bioprint ; 8(1): 504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187286

RESUMO

In neural tissue engineering (NTE), topographical, electrical, mechanical and/or biochemical stimulations are established methods to regulate neural cell activities in in vitro cultures. Aerosol Jet® Printing is here proposed as enabling technology to develop NTE integrated devices for electrically combined stimulations. The printability of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) commercial ink onto a reference substrate was firstly investigated and the effect of the process parameters on the quality of printed lines was analyzed. The study was then extended for printing thick electrodes and interconnects; the print strategy was finally transferred to a silicon-based wafer with patterned microchannels of proven cellular adhesion and topographical guidance. The results showed values of electrical resistance equal to ~16 Ω for printed electrodes which are ~33 µm thick and ~2 mm wide. The electrical impedance of the final circuit in saline solution was detected in the range of 1 - 2 kΩ at 1 kHz, which is in line with the expectations for bioelectronic neural interfaces. However, cells viability assays on the commercial PEDOT: PSS ink demonstrated a dose dependent cytotoxic behavior. The potential cause is associated with the presence of a cytotoxic co-solvent in the ink's formulation, which is released in the medium culture, even after a post-sintering process on the printed electrodes. This work is a first step to develop innovative in vitro NTE devices via a printed electronic approach. It also sheds new insights the transfer of AJ® print strategies across different substrates, and biocompatibility of commercial PEDOT: PSS inks.

3.
Materials (Basel) ; 13(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093226

RESUMO

The change from a consolidated manufacturing practice to a new solution is often a complex problem because of the operative limits of technologies and the strict constraints of industrial parts. Moreover, the new process must reflect or enhance the characteristics of the product and, overall, it must be more competitive in performances and costs. Accordingly, the development of a new process is a multilevel and multivariate problem that requires a systematic and hierarchical approach. The present paper focuses on the development of a Tube Hydroforming process capable to replace the current practice for production of T-Joint parts made of AISI 316L for the water pipes market. In particular, the problem must withstand many process and product constraints. Therefore, it was split in three steps focused on specific aspects of the process: identification of process parameters and configuration, numerical optimization of the blank tube dimensions (length and thickness), experimental tests and final improvements. In particular, two numerical methods were implemented in the optimization step: the line-search method to approach to the optimum point and Bisection method to refine the search. These approaches allowed us to identify the optimum process configuration and, in particular, the optimal dimensions of the blank tube that allows one to achieve the product requirements with the minimum cost of material.

4.
Materials (Basel) ; 12(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323945

RESUMO

Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys are very promising materials, in particular, in the biomedical field where their unique properties of biocompatibility and wear resistance can be exploited for surgery applications, prostheses, and many other medical devices. While Additive Manufacturing is a key technology in this field, micro-milling can be used for the creation of micro-scale details on the printed parts, not obtainable with Additive Manufacturing techniques. In particular, there is a lack of scientific research in the field of the fundamental material removal mechanisms involving micro-milling of Co-Cr-Mo alloys. Therefore, this paper presents a micro-milling characterization of Co-Cr-Mo samples produced by Additive Manufacturing with the Selective Laser Melting (SLM) technique. In particular, microchannels with different depths were made in order to evaluate the material behavior, including the chip formation mechanism, in micro-milling. In addition, the resulting surface roughness (Ra and Sa) and hardness were analyzed. Finally, the cutting forces were acquired and analyzed in order to ascertain the minimum uncut chip thickness for the material. The results of the characterization studies can be used as a basis for the identification of a machining window for micro-milling of biomedical grade cobalt-chromium-molybdenum (Co-Cr-Mo) alloys.

5.
Proc Inst Mech Eng H ; 230(7): 607-38, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27095509

RESUMO

Modeling and simulation of prosthetic devices are the new tools investigated for the production of total customized prostheses. Computational simulations are used to evaluate the geometrical and material designs of a device while assessing its mechanical behavior. Data acquisition through magnetic resonance imaging, computed tomography or laser scanning is the first step that gives information about the human anatomical structures; a file format has to be elaborated through computer-aided design software. Computer-aided design tools can be used to develop a device that respects the design requirements as, for instance, the human anatomy. Moreover, through finite element analysis software and the knowledge of loads and conditions the prostheses are supposed to face in vivo, it is possible to simulate, analyze and predict the mechanical behavior of the prosthesis and its effects on the surrounding tissues. Moreover, the simulations are useful to eventually improve the design (as geometry, materials, features) before the actual production of the device. This article presents an extensive analysis on the use of finite element modeling for the design, testing and development of prosthesis and orthosis devices.


Assuntos
Aparelhos Ortopédicos , Desenho de Prótese , Fenômenos Biomecânicos , Engenharia Biomédica , Simulação por Computador , Desenho Assistido por Computador , Análise de Elementos Finitos , Humanos , Stents
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...