Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982590

RESUMO

Photoluminescence intermittency remains one of the biggest challenges in realizing perovskite quantum dots (QDs) as scalable single photon emitters. We compare CsPbBr3 QDs capped with different ligands, lecithin, and a combination of oleic acid and oleylamine, to elucidate the role of surface chemistry on photoluminescence intermittency. We employ widefield photoluminescence microscopy to sample the blinking behavior of hundreds of QDs. Using change point analysis, we achieve the robust classification of blinking trajectories, and we analyze representative distributions from large numbers of QDs (Nlecithin = 1308, Noleic acid/oleylamine = 1317). We find that lecithin suppresses blinking in CsPbBr3 QDs compared with oleic acid/oleylamine. Under common experimental conditions, lecithin-capped QDs are 7.5 times more likely to be nonblinking and spend 2.5 times longer in their most emissive state, despite both QDs having nearly identical solution photoluminescence quantum yields. We measure photoluminescence as a function of dilution and show that the differences between lecithin and oleic acid/oleylamine capping emerge at low concentrations during preparation for single particle experiments. From experiment and first-principles calculations, we attribute the differences in lecithin and oleic acid/oleylamine performance to differences in their ligand binding equilibria. Consistent with our experimental data, density functional theory calculations suggest a stronger binding affinity of lecithin to the QD surface compared to oleic acid/oleylamine, implying a reduced likelihood of ligand desorption during dilution. These results suggest that using more tightly binding ligands is a necessity for surface passivation and, consequently, blinking reduction in perovskite QDs used for single particle and quantum light experiments.

2.
Chem Rev ; 124(13): 8009-8010, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982833
3.
Science ; 384(6701): 1227-1235, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870286

RESUMO

We present a design strategy for fabricating ultrastable phase-pure films of formamidinium lead iodide (FAPbI3) by lattice templating using specific two-dimensional (2D) perovskites with FA as the cage cation. When a pure FAPbI3 precursor solution is brought in contact with the 2D perovskite, the black phase forms preferentially at 100°C, much lower than the standard FAPbI3 annealing temperature of 150°C. X-ray diffraction and optical spectroscopy suggest that the resulting FAPbI3 film compresses slightly to acquire the (011) interplanar distances of the 2D perovskite seed. The 2D-templated bulk FAPbI3 films exhibited an efficiency of 24.1% in a p-i-n architecture with 0.5-square centimeter active area and an exceptional durability, retaining 97% of their initial efficiency after 1000 hours under 85°C and maximum power point tracking.

4.
Nat Mater ; 23(5): 656-663, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632374

RESUMO

Understanding the factors underpinning device switching times is crucial for the implementation of organic electrochemical transistors in neuromorphic computing, bioelectronics and real-time sensing applications. Existing models of device operation cannot explain the experimental observations that turn-off times are generally much faster than turn-on times in accumulation mode organic electrochemical transistors. Here, using operando optical microscopy, we image the local doping level of the transistor channel and show that turn-on occurs in two stages-propagation of a doping front, followed by uniform doping-while turn-off occurs in one stage. We attribute the faster turn-off to a combination of engineering as well as physical and chemical factors including channel geometry, differences in doping and dedoping kinetics and the phenomena of carrier-density-dependent mobility. We show that ion transport limits the operation speed in our devices. Our study provides insights into the kinetics of organic electrochemical transistors and guidelines for engineering faster organic electrochemical transistors.

5.
J Phys Chem Lett ; 15(5): 1288-1293, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38278521

RESUMO

We use electroabsorption (EA) spectroscopy to probe the charge transfer (CT) character in neat films and blends of donors and acceptors of interest for organic electronic applications. In particular, we compare the CT character in two polymer donor and non-fullerene acceptor blends, including 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6,7-difluoro)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-4F) and 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (Y6). Like classic polymer/fullerene blends, the blend based on IT-4F exhibits primarily first derivative-like EA features, suggesting localized exciton formation upon photoexcitation. However, the Y6-based blend has an EA spectrum that is dominated by second derivative-like features, consistent with CT character. We show that this signal originates primarily from Y6. We find that Y6 exhibits the highest dipole moment change (7.5 ± 2.5 D) of the molecules that comprise this study, consistent with a high degree of the CT character, and a relatively large polarization volume of 361 ± 70 Å3, consistent with strong electron delocalization. These results point to the origins of exceptional performance of organic photovoltaics (OPVs) based on Y6.

6.
J Am Chem Soc ; 146(2): 1435-1446, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174986

RESUMO

Most currently known n-type conjugated polymers have a semiflexible chain topology, and their charge carrier mobilities are known to peak at modest chain lengths of below 40-60 repeat units. Herein, we show that the field-effect electron mobility of a model n-type conjugated polymer that has a rigid-rod chain topology grows continuously without saturation, even at a chain length exceeding 250 repeat units. We found the mechanism underlying the novel chain length-dependent electron transport to originate from the reduced structural disorder and energetic disorder with the increasing degree of polymerization inherent to the rigid-rod chain topology. Furthermore, we demonstrate a unique chain length-dependent decay of threshold voltage, which is rationalized by decreased trap densities and trap depths with respect to the degree of polymerization. Our findings provide new insights into the role of polymer chain topology in electron transport and demonstrate the promise of rigid-rod chain architectures for the design of future high-mobility conjugated polymers.

7.
J Phys Chem Lett ; 14(41): 9310-9315, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37818819

RESUMO

In this work, we study the kinetics of photoinduced halide migration in FA0.8Cs0.2Pb(I0.8Br0.2)3 wide (∼1.69 eV) bandgap perovskites and show that halide migration slows down following surface passivation with (3-aminopropyl) trimethoxysilane (APTMS). We use scanning Kelvin probe microscopy (SKPM) to probe the contact potential difference (CPD) shift under illumination and the kinetics of surface potential relaxation in the dark. Our results show that APTMS-passivated perovskites exhibit a smaller CPD shift under illumination and a slower surface potential relaxation in the dark. We compare the evolution of the photoluminescence spectra of APTMS-passivated and unpassivated perovskites under illumination. We find that APTMS-passivated perovskites exhibit more than 5 times slower photoluminescence red-shift, consistent with the slower surface potential relaxation as observed by SKPM. These observations provide evidence for kinetic suppression of photoinduced halide migration in APTMS-passivated samples, likely due to reduced halide vacancy densities, opening avenues to more efficient and stable devices.

8.
Nat Mater ; 22(12): 1556-1563, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845322

RESUMO

Protein crystallization plays a central role in structural biology. Despite this, the process of crystallization remains poorly understood and highly empirical, with crystal contacts, lattice packing arrangements and space group preferences being largely unpredictable. Programming protein crystallization through precisely engineered side-chain-side-chain interactions across protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach for designing three-dimensional protein crystals with prespecified lattice architectures at atomic accuracy that hierarchically constrains the overall number of degrees of freedom of the system. We design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into >100 µm three-dimensional crystals. The structures of these crystals are nearly identical to the computational design models, closely corresponding in both overall architecture and the specific protein-protein interactions. The dimensions of the crystal unit cell can be systematically redesigned while retaining the space group symmetry and overall architecture, and the crystals are extremely porous and highly stable. Our approach enables the computational design of protein crystals with high accuracy, and the designed protein crystals, which have both structural and assembly information encoded in their primary sequences, provide a powerful platform for biological materials engineering.


Assuntos
Proteínas , Proteínas/química , Cristalização
9.
J Phys Chem C Nanomater Interfaces ; 127(32): 15969-15977, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37609378

RESUMO

We explore the application of excitation correlation spectroscopy to detect nonlinear photophysical dynamics in two distinct semiconductor classes through time-integrated photoluminescence and photocurrent measurements. In this experiment, two variably delayed femtosecond pulses excite the semiconductor, and the time-integrated photoluminescence or photocurrent component arising from the nonlinear dynamics of the populations induced by each pulse is measured as a function of inter-pulse delay by phase-sensitive detection with a lock-in amplifier. We focus on two limiting materials systems with contrasting optical properties: a prototypical lead-halide perovskite (LHP) solar cell, in which primary photoexcitations are charge photocarriers, and a single-component organic-semiconductor diode, which features Frenkel excitons as primary photoexcitations. The photoexcitation dynamics perceived by the two detection schemes in these contrasting systems are distinct. Nonlinear-dynamic contributions in the photoluminescence detection scheme arise from contributions to radiative recombination in both materials systems, while photocurrent arises directly in the LHP but indirectly following exciton dissociation in the organic system. Consequently, the basic photophysics of the two systems are reflected differently when comparing measurements with the two detection schemes. Our results indicate that photoluminescence detection in the LHP system provides valuable information about trap-assisted and Auger recombination processes, but that these processes are convoluted in a nontrivial way in the photocurrent response and are therefore difficult to differentiate. In contrast, the organic-semiconductor system exhibits more directly correlated responses in the nonlinear photoluminescence and photocurrent measurements, as charge carriers are secondary excitations only generated through exciton dissociation processes. We propose that bimolecular annihilation pathways mainly contribute to the generation of charge carriers in single-component organic semiconductor devices. Overall, our work highlights the utility of excitation correlation spectroscopy in modern semiconductor materials research, particularly in the analysis of nonlinear photophysical processes, which are deterministic for their electronic and optical properties.

10.
Chem Rev ; 123(12): 7890-7952, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311205

RESUMO

Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.

11.
J Phys Chem Lett ; 14(26): 6092-6098, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37364056

RESUMO

We use scanning probe microscopy to study ion migration in formamidinium (FA)-containing halide perovskite semiconductor Cs0.22FA0.78Pb(I0.85Br0.15)3 in the presence and absence of chemical surface passivation. We measure the evolving contact potential difference (CPD) using scanning Kelvin probe microscopy (SKPM) following voltage poling. We find that ion migration leads to a ∼100 mV shift in the CPD of control films after poling with 3 V for only a few seconds. Moreover, we find that ion migration is heterogeneous, with domain interfaces leading to a larger CPD shift than domain interiors. Application of (3-aminopropyl)trimethoxysilane (APTMS) as a surface passivator further leads to 5-fold reduction in the CPD shift from ∼100 to ∼20 mV. We use hyperspectral microscopy to confirm that APTMS-treated perovskite films undergo less photoinduced halide migration than control films. We interpret these results as due to a reduction in the halide vacancy concentration after APTMS passivation.

12.
Small ; 19(25): e2205893, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942857

RESUMO

The application of machine learning is demonstrated for rapid and accurate extraction of plasmonic particles cluster geometries from hyperspectral image data via a dual variational autoencoder (dual-VAE). In this approach, the information is shared between the latent spaces of two VAEs acting on the particle shape data and spectral data, respectively, but enforcing a common encoding on the shape-spectra pairs. It is shown that this approach can establish the relationship between the geometric characteristics of nanoparticles and their far-field photonic responses, demonstrating that hyperspectral darkfield microscopy can be used to accurately predict the geometry (number of particles, arrangement) of a multiparticle assemblies below the diffraction limit in an automated fashion with high fidelity (for monomers (0.96), dimers (0.86), and trimers (0.58). This approach of building structure-property relationships via shared encoding is universal and should have applications to a broader range of materials science and physics problems in imaging of both molecular and nanomaterial systems.

14.
Science ; 379(6633): 690-694, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795809

RESUMO

Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours.

15.
J Am Chem Soc ; 145(3): 1866-1876, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630664

RESUMO

We study the organic electrochemical transistor (OECT) performance of the ladder polymer poly(benzimidazobenzophenanthroline) (BBL) in an attempt to better understand how an apparently hydrophobic side-chain-free polymer is able to operate as an OECT with favorable redox kinetics in an aqueous environment. We examine two BBLs of different molecular masses from different sources. Regardless of molecular mass, both BBLs show significant film swelling during the initial reduction step. By combining electrochemical quartz crystal microbalance gravimetry, in-operando atomic force microscopy, and both ex-situ and in-operando grazing incidence wide-angle X-ray scattering (GIWAXS), we provide a detailed structural picture of the electrochemical charge injection process in BBL in the absence of any hydrophilic side-chains. Compared with ex-situ measurements, in-operando GIWAXS shows both more swelling upon electrochemical doping than has previously been recognized and less contraction upon dedoping. The data show that BBL films undergo an irreversible hydration driven by the initial electrochemical doping cycle with significant water retention and lamellar expansion that persists across subsequent oxidation/reduction cycles. This swelling creates a hydrophilic environment that facilitates the subsequent fast hydrated ion transport in the absence of the hydrophilic side-chains used in many other polymer systems. Due to its rigid ladder backbone and absence of hydrophilic side-chains, the primary BBL water uptake does not significantly degrade the crystalline order, and the original dehydrated, unswelled state can be recovered after drying. The combination of doping induced hydrophilicity and robust crystalline order leads to efficient ionic transport and good stability.

16.
J Chem Inf Model ; 62(18): 4342-4350, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36099208

RESUMO

Advances in scanning probe microscopy (SPM) methods such as time-resolved electrostatic force microscopy (trEFM) now permit the mapping of fast local dynamic processes with high resolution in both space and time, but such methods can be time-consuming to analyze and calibrate. Here, we design and train a regression neural network (NN) that accelerates and simplifies the extraction of local dynamics from SPM data directly in a cantilever-independent manner, allowing the network to process data taken with different cantilevers. We validate the NN's ability to recover local dynamics with a fidelity equal to or surpassing conventional, more time-consuming, calibrations using both simulated and real microscopy data. We apply this method to extract accurate photoinduced carrier dynamics on n = 1 butylammonium lead iodide, a halide perovskite semiconductor film that is of interest for applications in both solar photovoltaics and quantum light sources. Finally, we use SHapley Additive exPlanations to evaluate the robustness of the trained model, confirm its cantilever-independence, and explore which parts of the trEFM signal are important to the network.


Assuntos
Iodetos , Redes Neurais de Computação , Calibragem , Microscopia de Força Atômica/métodos , Eletricidade Estática
17.
Science ; 377(6613): 1425-1430, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137050

RESUMO

Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D-2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency.

18.
Nat Nanotechnol ; 17(1): 53-60, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34873302

RESUMO

Although the multiple-component (MC) blend strategy has been frequently used as a very effective way to improve the performance of organic solar cells (OSCs), there is a strong need to understand the fundamental working mechanism and material selection rule for achieving optimal MC-OSCs. Here we present the 'dilution effect' as the mechanism for MC-OSCs, where two highly miscible components are molecularly intermixed. Contrary to the aggregation-induced non-radiative decay, the dilution effect enables higher luminescence quantum efficiencies and open-circuit voltages (VOC) in MC-OSCs via suppressed electron-vibration coupling. The continuously broadened bandgap together with reduced electron-vibration coupling also explains the composition-dependent VOC in ternary blends well. Moreover, we show that electrons can transfer between different acceptors, depending on the energy offset between them, which contributes to the largely unperturbed charge transport and high fill factors in MC-OSCs. The discovery of the dilution effect enables the demonstration of a high power conversion efficiency of 18.31% in an MC-OSC.

19.
Mater Horiz ; 9(1): 325-333, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34842253

RESUMO

Understanding the factors controlling radiative and non-radiative transition rates for charge transfer states in organic systems is important for applications ranging from organic photovoltaics (OPV) to lasers and LEDs. We explore the role of charge-transfer (CT) energetics, lifetimes, and photovoltaic properties in the limit of very slow non-radiative rates by using a model donor/acceptor system with photoluminescence dominated by thermally activated delayed fluorescence (TADF). This blend exhibits an extremely high photoluminescence quantum efficiency (PLQY = ∼22%) and comparatively long PL lifetime, while simultaneously yielding appreciable amounts of free charge generation (photocurrent external quantum efficiency EQE of 24%). In solar cells, this blend exhibits non-radiative voltage losses of only ∼0.1 V, among the lowest reported for an organic system. Notably, we find that the non-radiative decay rate, knr, is on the order of 105 s-1, approximately 4-5 orders of magnitude slower than typical OPV blends, thereby confirming that high radiative efficiency and low non-radiative voltage losses are achievable by reducing knr. Furthermore, despite the high radiative efficiency and already comparatively slow knr, we find that knr is nevertheless much faster than predicted by Marcus-Levich-Jortner two-state theory and we conclude that CT-local exciton (LE) hybridization is present. Our findings highlight that it is crucial to evaluate how radiative and non-radiative rates of the LE states individually influence the PLQY of charge-transfer states, rather than solely focusing on the PLQY of the LE. This conclusion will guide material selection in achieving low non-radiative voltage loss in organic solar cells and high luminescence efficiency in organic LEDs.

20.
Adv Mater ; 33(46): e2107344, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780119
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...