Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(1): 1-6, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38127444

RESUMO

Thermodynamic uncertainty relations (TURs) relate precision to the dissipation rate, yet the inequalities can be far from saturation. Indeed, in catenane molecular motor simulations, we record precision far below the TUR limit. We further show that this inefficiency can be anticipated by four physical parameters: the thermodynamic driving force, fuel decomposition rate, coupling between fuel decomposition and motor motion, and rate of undriven motor motion. The physical insights might assist in designing molecular motors in the future.

2.
Proc Natl Acad Sci U S A ; 120(33): e2210500120, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549273

RESUMO

Simulations can help unravel the complicated ways in which molecular structure determines function. Here, we use molecular simulations to show how slight alterations of a molecular motor's structure can cause the motor's typical dynamical behavior to reverse directions. Inspired by autonomous synthetic catenane motors, we study the molecular dynamics of a minimal motor model, consisting of a shuttling ring that moves along a track containing interspersed binding sites and catalytic sites. The binding sites attract the shuttling ring while the catalytic sites speed up a reaction between molecular species, which can be thought of as fuel and waste. When that fuel and waste are held in nonequilibrium steady-state concentrations, the free energy from the reaction drives directed motion of the shuttling ring along the track. Using this model and nonequilibrium molecular dynamics, we show that the shuttling ring's direction can be reversed by simply adjusting the spacing between binding and catalytic sites on the track. We present a steric mechanism behind the current reversal, supported by kinetic measurements from the simulations. These results demonstrate how molecular simulation can guide future development of artificial molecular motors.

4.
Phys Rev E ; 106(2-1): 024128, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109964

RESUMO

The thermodynamic uncertainty relation (TUR) quantifies a relationship between current fluctuations and dissipation in out-of-equilibrium overdamped Langevin dynamics, making it a natural counterpart of the fluctuation-dissipation theorem in equilibrium statistical mechanics. For underdamped Langevin dynamics, the situation is known to be more complicated with dynamical activity also playing a role in limiting the magnitude of current fluctuations. Progress on those underdamped TUR-like bounds has largely come from applications of the information-theoretic Cramér-Rao inequality. Here, we present an alternative perspective by employing large deviation theory. The approach offers a general unified treatment of TUR-like bounds for both overdamped and underdamped Langevin dynamics built upon current fluctuations achieved by scaling time. The bounds we derive following this approach are similar to known results but with differences we discuss and rationalize.

5.
J Chem Phys ; 157(5): 054104, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933195

RESUMO

We present an approach based upon binary tree tensor network (BTTN) states for computing steady-state current statistics for a many-particle 1D ratchet subject to volume exclusion interactions. The ratcheted particles, which move on a lattice with periodic boundary conditions subject to a time-periodic drive, can be stochastically evolved in time to sample representative trajectories via a Gillespie method. In lieu of generating realizations of trajectories, a BTTN state can variationally approximate a distribution over the vast number of many-body configurations. We apply the density matrix renormalization group algorithm to initialize BTTN states, which are then propagated in time via the time-dependent variational principle (TDVP) algorithm to yield the steady-state behavior, including the effects of both typical and rare trajectories. The application of the methods to ratchet currents is highlighted, but the approach extends naturally to other interacting lattice models with time-dependent driving. Although trajectory sampling is conceptually and computationally simpler, we discuss situations for which the BTTN TDVP strategy can be beneficial.

6.
Nat Nanotechnol ; 17(7): 675-676, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35760896

Assuntos
Luz
7.
J Chem Phys ; 156(22): 221103, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705395

RESUMO

The study of Brownian ratchets has taught how time-periodic driving supports a time-periodic steady state that generates nonequilibrium transport. When a single particle is transported in one dimension, it is possible to rationalize the current in terms of the potential, but experimental efforts have ventured beyond that single-body case to systems with many interacting carriers. Working with a lattice model of volume-excluding particles in one dimension, we analyze the impact of interactions on a flashing ratchet's current. To surmount the many-body problem, we employ the time-dependent variational principle applied to binary tree tensor networks. Rather than propagating individual trajectories, the tensor network approach propagates a distribution over many-body configurations via a controllable variational approximation. The calculations, which reproduce Gillespie trajectory sampling, identify and explain a shift in the frequency of maximum current to higher driving frequency as the lattice occupancy increases.

8.
Nat Commun ; 13(1): 2204, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459863

RESUMO

Most computer simulations of molecular dynamics take place under equilibrium conditions-in a closed, isolated system, or perhaps one held at constant temperature or pressure. Sometimes, extra tensions, shears, or temperature gradients are introduced to those simulations to probe one type of nonequilibrium response to external forces. Catalysts and molecular motors, however, function based on the nonequilibrium dynamics induced by a chemical reaction's thermodynamic driving force. In this scenario, simulations require chemostats capable of preserving the chemical concentrations of the nonequilibrium steady state. We develop such a dynamic scheme and use it to observe cycles of a particle-based classical model of a catenane-like molecular motor. Molecular motors are frequently modeled with detailed-balance-breaking Markov models, and we explicitly construct such a picture by coarse graining the microscopic dynamics of our simulations in order to extract rates. This work identifies inter-particle interactions that tune those rates to create a functional motor, thereby yielding a computational playground to investigate the interplay between directional bias, current generation, and coupling strength in molecular information ratchets.


Assuntos
Simulação de Dinâmica Molecular , Temperatura , Termodinâmica
9.
J Chem Phys ; 153(20): 204102, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33261473

RESUMO

Reaction rates are a complicated function of molecular interactions, which can be selected from vast chemical design spaces. Seeking the design that optimizes a rate is a particularly challenging problem since the rate calculation for any one design is itself a difficult computation. Toward this end, we demonstrate a strategy based on transition path sampling to generate an ensemble of designs and reactive trajectories with a preference for fast reaction rates. Each step of the Monte Carlo procedure requires a measure of how a design constrains molecular configurations, expressed via the reciprocal of the partition function for the design. Although the reciprocal of the partition function would be prohibitively expensive to compute, we apply Booth's method for generating unbiased estimates of a reciprocal of an integral to sample designs without bias. A generalization with multiple trajectories introduces a stronger preference for fast rates, pushing the sampled designs closer to the optimal design. We illustrate the methodology on two toy models of increasing complexity: escape of a single particle from a Lennard-Jones potential well of tunable depth and escape from a metastable tetrahedral cluster with tunable pair potentials.

10.
Phys Rev E ; 102(1-1): 012141, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32795034

RESUMO

It is well known that Brownian ratchets can exhibit current reversals, wherein the sign of the current switches as a function of the driving frequency. We introduce a spatial discretization of such a two-dimensional Brownian ratchet to enable spectral methods that efficiently compute those currents. These discrete-space models provide a convenient way to study the Markovian dynamics conditioned upon generating particular values of the currents. By studying such conditioned processes, we demonstrate that low-frequency negative values of current arise from typical events and high-frequency positive values of current arises from rare events. We demonstrate how these observations can inform the sculpting of time-dependent potential landscapes with a specific frequency response.

11.
Nat Commun ; 10(1): 1666, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971687

RESUMO

Systems coupled to multiple thermodynamic reservoirs can exhibit nonequilibrium dynamics, breaking detailed balance to generate currents. To power these currents, the entropy of the reservoirs increases. The rate of entropy production, or dissipation, is a measure of the statistical irreversibility of the nonequilibrium process. By measuring this irreversibility in several biological systems, recent experiments have detected that particular systems are not in equilibrium. Here we discuss three strategies to replace binary classification (equilibrium versus nonequilibrium) with a quantification of the entropy production rate. To illustrate, we generate time-series data for the evolution of an analytically tractable bead-spring model. Probability currents can be inferred and utilized to indirectly quantify the entropy production rate, but this approach requires prohibitive amounts of data in high-dimensional systems. This curse of dimensionality can be partially mitigated by using the thermodynamic uncertainty relation to bound the entropy production rate using statistical fluctuations in the probability currents.

12.
Phys Rev Lett ; 119(17): 170601, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219443

RESUMO

Current is a characteristic feature of nonequilibrium systems. In stochastic systems, these currents exhibit fluctuations constrained by the rate of dissipation in accordance with the recently discovered thermodynamic uncertainty relation. Here, we derive a conjugate uncertainty relationship for the first passage time to accumulate a fixed net current. More generally, we use the tools of large-deviation theory to simply connect current fluctuations and first passage time fluctuations in the limit of long times and large currents. With this connection, previously discovered symmetries and bounds on the large-deviation function for currents are readily transferred to first passage times.

13.
Phys Rev E ; 96(2-1): 020103, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950543

RESUMO

The thermodynamic uncertainty relation offers a universal energetic constraint on the relative magnitude of current fluctuations in nonequilibrium steady states. However, it has only been derived for long observation times. Here, we prove a recently conjectured finite-time thermodynamic uncertainty relation for steady-state current fluctuations. Our proof is based on a quadratic bound to the large deviation rate function for currents in the limit of a large ensemble of many copies.

14.
Proc Natl Acad Sci U S A ; 113(37): 10263-8, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27573816

RESUMO

The development of sophisticated experimental means to control nanoscale systems has motivated efforts to design driving protocols that minimize the energy dissipated to the environment. Computational models are a crucial tool in this practical challenge. We describe a general method for sampling an ensemble of finite-time, nonequilibrium protocols biased toward a low average dissipation. We show that this scheme can be carried out very efficiently in several limiting cases. As an application, we sample the ensemble of low-dissipation protocols that invert the magnetization of a 2D Ising model and explore how the diversity of the protocols varies in response to constraints on the average dissipation. In this example, we find that there is a large set of protocols with average dissipation close to the optimal value, which we argue is a general phenomenon.

15.
Phys Rev Lett ; 116(12): 120601, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058064

RESUMO

Near equilibrium, small current fluctuations are described by a Gaussian distribution with a linear-response variance regulated by the dissipation. Here, we demonstrate that dissipation still plays a dominant role in structuring large fluctuations arbitrarily far from equilibrium. In particular, we prove a linear-response-like bound on the large deviation function for currents in Markov jump processes. We find that nonequilibrium current fluctuations are always more likely than what is expected from a linear-response analysis. As a small-fluctuations corollary, we derive a recently conjectured uncertainty bound on the variance of current fluctuations.

16.
J Chem Phys ; 142(23): 234104, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26093547

RESUMO

Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however, requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here, we examine schemes for addressing this problem, which engineer correlation between a trial trajectory and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern perspective on Markov chain Monte Carlo sampling, inspired by non-equilibrium statistical mechanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of random numbers that advance its stochastic time evolution, as done in a handful of existing methods. In cases where this "noise guidance" synchronizes trajectories effectively, as the Glauber dynamics of a two-dimensional Ising model, we show that efficient path sampling can be achieved for even very long trajectories.

17.
Artigo em Inglês | MEDLINE | ID: mdl-25375454

RESUMO

We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the probability distribution for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The corresponding joint rate function demonstrates two dynamical phases--one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. Symmetries in dynamic order parameters influence the observation of a transition, such that distributions for certain dynamic order parameters need not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the form of the effective Markov transition matrices that generate dynamics in which the two dynamical phases are at coexistence. We discuss the implications of the transition for the response of bacterial cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit bistability in configuration space will exhibit a bistability of dynamical phases.


Assuntos
Entropia , Modelos Teóricos , Probabilidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-25019726

RESUMO

We analyze the probability distribution for entropy production rates of trajectories evolving on a class of out-of-equilibrium kinetic networks. These networks can serve as simple models for driven dynamical systems, where energy fluxes typically result in nonequilibrium dynamics. By analyzing the fluctuations in the entropy production, we demonstrate the emergence, in a large system size limit, of a dynamic phase transition between two distinct dynamical regimes.


Assuntos
Cinética , Modelos Estatísticos , Entropia , Distribuição de Poisson , Probabilidade
19.
J Phys Condens Matter ; 23(13): 135306, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21415482

RESUMO

Molecular dynamics computer simulations of the filling of carbon nanotubes (CNTs) by a generic molten salt to form hexagonal-net-based inorganic nanotubes (INTs) are described. A model is introduced to incorporate CNT metallicity which imposes variable Gaussian charges on each atomic site in order to retain an equipotential. The inclusion of CNT metallicity is observed to have no significant effect on the distribution of the INT morphologies formed as compared with the filling of non-metallic CNTs. The application of a voltage bias to the CNT forms a new class of INTs which can be considered as constructed from concentric layers of pseudo-close-packed anions and cations. Removal of the voltage bias leads to the formation of hexagonal-net-based INTs with a distribution of morphologies different to that observed for the filling of the unbiased CNTs. The differences in distributions are interpreted in terms of the CNTs behaving as effective energy landscape filters, for which the applied voltage acts as an additional control variable. The application of a potential acts to control the distribution of INT morphologies by facilitating alternative mechanistic pathways to nanotube formation.


Assuntos
Ânions/química , Cátions/química , Nanopartículas Metálicas/química , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Metais/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...