Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 49(8): 2021-2037, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814360

RESUMO

Acetylcholine is the main neurotransmitter at the vertebrate neuromuscular junctions (NMJs). ACh exocytosis is precisely modulated by co-transmitter ATP and its metabolites. It is assumed that ATP/ADP effects on ACh release rely on activation of presynaptic Gi protein-coupled P2Y13 receptors. However, downstream signaling mechanism of ATP/ADP-mediated modulation of neuromuscular transmission remains elusive. Using microelectrode recording and fluorescent indicators, the mechanism underlying purinergic regulation was studied in the mouse diaphragm NMJs. Pharmacological stimulation of purinoceptors with ADP decreased synaptic vesicle exocytosis evoked by both low and higher frequency stimulation. This inhibitory action was suppressed by antagonists of P2Y13 receptors (MRS 2211), Ca2+ mobilization (TMB8), protein kinase C (chelerythrine) and NADPH oxidase (VAS2870) as well as antioxidants. This suggests the participation of Ca2+ and reactive oxygen species (ROS) in the ADP-triggered signaling. Indeed, ADP caused an increase in cytosolic Ca2+ with subsequent elevation of ROS levels. The elevation of [Ca2+]in was blocked by MRS 2211 and TMB8, whereas upregulation of ROS was prevented by pertussis toxin (inhibitor of Gi protein) and VAS2870. Targeting the main components of lipid rafts, cholesterol and sphingomyelin, suppressed P2Y13 receptor-dependent attenuation of exocytosis and ADP-induced enhancement of ROS production. Inhibition of P2Y13 receptors decreased ROS production and increased the rate of exocytosis during intense activity. Thus, suppression of neuromuscular transmission by exogenous ADP or endogenous ATP can rely on P2Y13 receptor/Gi protein/Ca2+/protein kinase C/NADPH oxidase/ROS signaling, which is coordinated in a lipid raft-dependent manner.


Assuntos
Microdomínios da Membrana , Junção Neuromuscular , Oxirredução , Transdução de Sinais , Transmissão Sináptica , Animais , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Camundongos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Exocitose/fisiologia , Exocitose/efeitos dos fármacos , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Cálcio/metabolismo
2.
Arch Biochem Biophys ; 749: 109803, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37955112

RESUMO

Membrane cholesterol oxidation is a hallmark of redox and metabolic imbalance, and it may accompany neurodegenerative disorders. Using microelectrode recordings of postsynaptic responses as well as fluorescent dyes for monitoring synaptic vesicle cycling and membrane properties, the action of enzymatic cholesterol oxidation on neuromuscular transmission was studied in the mice diaphragms. Cholesterol oxidase (ChO) at low concentration disturbed lipid-ordering specifically in the synaptic membranes, but it did not change markedly spontaneous exocytosis and evoked release in response to single stimuli. At low external Ca2+ conditions, analysis of single exocytotic events revealed a decrease in minimal synaptic delay and the probability of exocytosis upon plasmalemmal cholesterol oxidation. At moderate- and high-frequency activity, ChO treatment enhanced both neurotransmitter and FM-dye release. Furthermore, it precluded a change in exocytotic mode from full-fusion to kiss-and-run during high-frequency stimulation. Accumulation of extracellular acetylcholine (without stimulation) dependent on vesamicol-sensitive transporters was suppressed by ChO. The effects of plasmalemmal cholesterol oxidation on both neurotransmitter/dye release at intense activity and external acetylcholine levels were reversed when synaptic vesicle membranes were also exposed to ChO (i.e., the enzyme treatment was combined with induction of exo-endocytotic cycling). Thus, we suggest that plasmalemmal cholesterol oxidation affects exocytotic machinery functioning, enhances synaptic vesicle recruitment to the exocytosis and decreases extracellular neurotransmitter levels at rest, whereas ChO acting on synaptic vesicle membranes suppresses the participation of the vesicles in the subsequent exocytosis and increases the neurotransmitter leakage. The mechanisms underlying ChO action can be related to the lipid raft disruption.


Assuntos
Acetilcolina , Colesterol Oxidase , Camundongos , Animais , Colesterol Oxidase/metabolismo , Colesterol Oxidase/farmacologia , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Transmissão Sináptica/fisiologia , Junção Neuromuscular/metabolismo , Colesterol/metabolismo , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia
3.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240370

RESUMO

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo
4.
Life Sci ; 318: 121507, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801470

RESUMO

AIMS: Sphingomyelin is an abundant component of the presynaptic membrane and an organizer of lipid rafts. In several pathological conditions, sphingomyelin is hydrolyzed due to an upregulation and release of secretory sphingomyelinases (SMases). Herein, the effects of SMase on exocytotic neurotransmitter release were studied in the diaphragm neuromuscular junctions of mice. MAIN METHODS: Microelectrode recordings of postsynaptic potentials and styryl (FM) dyes were used to estimate neuromuscular transmission. Membrane properties were assessed with fluorescent techniques. KEY FINDINGS: Application of SMase at a low concentration (0.01 U ml-1) led to a disruption of lipid-packing in the synaptic membranes. Neither spontaneous exocytosis nor evoked neurotransmitter release (in response to single stimuli) were affected by SMase treatment. However, SMase significantly increased neurotransmitter release and the rate of fluorescent FM-dye loss from the synaptic vesicles at 10, 20 and 70 Hz stimulation of the motor nerve. In addition, SMase treatment prevented a shift of the exocytotic mode from "full-collapse" fusion to "kiss-and-run" during high-frequency (70 Hz) activity. The potentiating effects of SMase on neurotransmitter release and FM-dye unloading were suppressed when synaptic vesicle membranes were also exposed to this enzyme (i.e., stimulation occurred during SMase treatment). SIGNIFICANCE: Thus, hydrolysis of the plasma membrane sphingomyelin can enhance mobilization of synaptic vesicles and facilitate full fusion mode of exocytosis, but SMase acting on vesicular membrane had a depressant effect on the neurotransmission. Partially, the effects of SMase can be related with the changes in synaptic membrane properties and intracellular signaling.


Assuntos
Esfingomielina Fosfodiesterase , Vesículas Sinápticas , Camundongos , Animais , Vesículas Sinápticas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia , Transmissão Sináptica , Junção Neuromuscular , Neurotransmissores/metabolismo , Exocitose
5.
Acta Physiol (Oxf) ; 233(4): e13702, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34097801

RESUMO

AIM: Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres. METHODS: Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction. RESULTS: Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+ ]i transients, without detectable [Ca2+ ]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve-evoked or spontaneous synaptic activity or muscle contractions in adult myofibres. CONCLUSION: Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration.


Assuntos
Canais Iônicos , Músculo Esquelético , Animais , Transporte Biológico , Diferenciação Celular , Canais Iônicos/metabolismo , Camundongos , Músculo Esquelético/metabolismo
6.
Life Sci ; 273: 119300, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662433

RESUMO

AIMS: Plasma hyperlipidemia is a protective factor in amyotrophic lateral sclerosis (ALS) while cholesterol-lowering drugs aggravate the pathology. We hypothesize that this phenomenon can be linked with membrane lipid alterations in the neuromuscular junctions (NMJs) occurring before motor neuron loss. METHODS: Neurotransmitter release in parallel with lipid membrane properties in diaphragm NMJs of SOD1G93A (mSOD) mice at nine weeks of age (pre-onset stage) were assessed. KEY FINDINGS: Despite on slight changes in spontaneous and evoked quantum release of acetylcholine, extracellular levels of choline at resting conditions, an indicator of non-quantum release, were significantly increased in mSOD mice. The use of lipid-sensitive fluorescent probes points to lipid raft disruption in the NMJs of mSOD mice. However, content of cholesterol, a key raft component was unchanged implying another pathway responsible for the loss of raft integrity. In the mSOD mice we found marked increase in levels of raft-destabilizing lipid ceramide. This was accompanied by enhanced ability to uptake of exogenous ceramide in NMJs. Acute and chronic administration of 25-hydroxycholesterol, whose levels increase due to hypercholesterolemia, recovered early alterations in membrane properties. Furthermore, chronic treatment with 25-hydroxycholesterol prevented increase in ceramide and extracellular choline levels as well as suppressed lipid peroxidation of NMJ membranes and fragmentation of end plates. SIGNIFICANCE: Thus, lipid raft disruption likely due to ceramide accumulation could be early event in ALS which may trigger neuromuscular abnormalities. Cholesterol derivative 25-hydroxycholesterol may serve as a molecule restoring the membrane and functional properties of NMJs at the early stage.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Modelos Animais de Doenças , Hidroxicolesteróis/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Superóxido Dismutase-1/fisiologia , Acetilcolina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Ceramidas/metabolismo , Colesterol/metabolismo , Feminino , Masculino , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular , Transmissão Sináptica
7.
Neuroscience ; 399: 135-145, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30593920

RESUMO

Hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS), endogenously produced during metabolism, which acts as a second messenger. In skeletal muscles, hypoxia- or hyperthermia-induced increase in H2O2 might affect synaptic transmission by targeting the most redox-sensitive presynaptic compartment (Giniatullin et al., 2006). However, the effects of H2O2 as a signal molecule have not previously been studied in different patterns of the synaptic activity. Here, using optical and microelectrode recording of synaptic vesicle exocytosis, we studied the use-dependent action of low concentrations of H2O2 and other oxidants in the mouse neuromuscular junction. We found that: (i) H2O2 at low micromole concentrations inhibited both spontaneous and evoked transmitter releases from the motor nerve terminals in a use-dependent manner, (ii) the antioxidant N-acetylcysteine (NAC) eliminated these depressant effects, (iii) the influence of H2O2 was not associated with lipid oxidation suggesting a pure signaling action, (iv) the intracellular oxidant Chloramine-T or (v) the glutathione depletion produced similar to H2O2 depressant effects. Taken together, our data revealed the effective inhibition of neurotransmitter release by ROS, which was proportional to the intensity of synaptic activity at the neuromuscular junction. The combination of various oxidants suggested an intracellular location for redox-sensitive sites responsible for modulation of the synaptic transmission in the skeletal muscle.


Assuntos
Peróxido de Hidrogênio/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Oxidantes/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Cloraminas/metabolismo , Diafragma/efeitos dos fármacos , Diafragma/inervação , Diafragma/metabolismo , Relação Dose-Resposta a Droga , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Feminino , Glutationa/metabolismo , Masculino , Lipídeos de Membrana/metabolismo , Camundongos , Junção Neuromuscular/fisiologia , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/fisiologia , Técnicas de Cultura de Tecidos , Compostos de Tosil/metabolismo
8.
Neuroscience ; 383: 1-11, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29733889

RESUMO

Adenosine is a powerful modulator of skeletal neuromuscular transmission, operating via inhibitory or facilitatory purinergic-type P1 receptors. To date, studies have been focused mainly on the effect of adenosine on presynaptic P1 receptors controlling transmitter release. In this study, using two-microelectrode voltage-clamp and single-channel patch-clamp recording techniques, we have explored potential postsynaptic targets of adenosine and their modulatory effect on nicotinic acetylcholine receptor (nAChR)-mediated synaptic responses in adult mouse skeletal muscle fibers in vitro. In the whole-mount neuromuscular junction (NMJ) preparation, adenosine (100 µM) significantly reduced the frequency of the miniature endplate currents (MEPCs) and slowed their rising and decay time. Consistent with a postsynaptic site of action, adenosine and the potent P1 receptor agonist NECA significantly increased the open probability, the frequency and the open time of single nAChR channels, recorded at the endplate region. Using specific ligands for the P1 receptor subtypes, we found that the low-affinity P1 receptor subtype A2B was responsible for mediating the effects of adenosine on the nAChR channel openings. Our data suggest that at the adult mammalian NMJ, adenosine acts not only presynaptically to modulate acetylcholine transmitter release, but also at the postsynaptic level, to enhance the activity of nAChRs. Our findings open a new scenario in understanding of purinergic regulation of nAChR activity at the mammalian endplate region.


Assuntos
Adenosina/metabolismo , Placa Motora/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Masculino , Camundongos , Transmissão Sináptica/fisiologia
9.
Mol Cell Neurosci ; 88: 308-318, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29550246

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the initial denervation of skeletal muscle and subsequent death of motor neurons. A dying-back pattern of ALS suggests a crucial role for neuromuscular junction dysfunction. In the present study, microelectrode recording of postsynaptic currents and optical detection of synaptic vesicle traffic (FM1-43 dye) and intracellular NO levels (DAF-FM DA) were used to examine the effect of the major brain-derived cholesterol metabolite 24S-hydroxycholesterol (24S-HC, 0.4 µM) on neuromuscular transmission in the diaphragm of transgenic mice carrying a mutant superoxide dismutase 1 (SODG93A). We found that 24S-HC suppressed spontaneous neurotransmitter release and neurotransmitter exocytosis during high-frequency stimulation. The latter was accompanied by a decrease in both the rate of synaptic vesicle recycling and activity-dependent enhancement of NO production. Inhibition of NO synthase with L-NAME also attenuated synaptic vesicle exocytosis during high-frequency stimulation and completely abolished the effect of 24S-HC itself. Of note, 24S-HC enhanced the labeling of synaptic membranes with B-subunit of cholera toxin, suggesting an increase in lipid ordering. Lipid raft-disrupting agents (methyl-ß-cyclodextrin, sphingomyelinase) prevented the action of 24S-HC on both lipid raft marker labeling and NO synthesis. Together, these experiments indicate that 24S-HC is able to suppress the exocytotic release of neurotransmitter in response to intense activity via a NO/lipid raft-dependent pathway in the neuromuscular junctions of SODG93A mice.


Assuntos
Hidroxicolesteróis/farmacologia , Microdomínios da Membrana/metabolismo , Óxido Nítrico/metabolismo , Superóxido Dismutase/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Exocitose/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Superóxido Dismutase-1 , Potenciais Sinápticos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
10.
Neurobiol Aging ; 38: 73-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26827645

RESUMO

Reactive oxygen species (ROS) are implicated in aging, but the neurobiological mechanisms of ROS action are not fully understood. Using electrophysiological techniques and biochemical assays, we studied the age-dependent effect of hydrogen peroxide (H2O2) on acetylcholine release in rat diaphragm neuromuscular junctions. H2O2 significantly inhibited both spontaneous (measured as frequency of miniature end-plate potentials) and evoked (amplitude of end-plate potentials) transmitter release in adult rats. The inhibitory effect of H2O2 was much stronger in old rats, whereas in newborns tested during the first postnatal week, H2O2 did not affect spontaneous release from nerve endings and potentiated end-plate potentials. Proteinkinase C activation or intracellular Ca2+ elevation restored redox sensitivity of miniature end-plate potentials in newborns. The resistance of neonates to H2O2 inhibition was associated with higher catalase and glutathione peroxidase activities in skeletal muscle. In contrast, the activities of these enzymes were downregulated in old rats. Our data indicate that the vulnerability of transmitter release to oxidative damage strongly correlates with aging and might be used as an early indicator of senescence.


Assuntos
Envelhecimento/fisiologia , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetilcolina/metabolismo , Envelhecimento/metabolismo , Animais , Cálcio/metabolismo , Catalase/metabolismo , Diafragma/inervação , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína Quinase C/metabolismo , Ratos
11.
Eur J Pharmacol ; 765: 140-53, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26297975

RESUMO

Fenoterol, a ß2-adrenoceptor agonist, has anti-apoptotic action in cardiomyocytes and induces a specific pattern of downstream signaling. We have previously reported that exposure to fenoterol (5 µM) results in a delayed positive inotropic effect which is related to changes in both Ca2+ transient and NO. Here, the changes in reactive oxygen species (ROS) production in response to the fenoterol administration and the involvement of ROS in effect of this agonist on contractility were investigated in mouse isolated atria. Stimulation of ß2-adrenoceptor increases a level of extracellular ROS, while intracellular ROS level rises only after removal of fenoterol from the bath. NADPH-oxidase inhibitor (apocynin) prevents the increase in ROS production and the Nox2 isoform is immunofluorescently colocalized with ß2-adrenoceptor at the atrial myocytes. Treatments with antioxidants (N-acetyl-L-cysteine, NADPH inhibitors, exogenous catalases) significantly inhibit the fenoterol induced increase in the contraction amplitude, probably by attenuating Ca2+ transient and up-regulating NO production. ROS generated in a ß2-adrenoceptor-dependent manner can potentiate the activity of some Ca2+ channels. Indeed, inhibition of ryanodine receptors, TRPV-or L-type Ca2+- channels shows a similar efficacy in reduction of positive inotropic effect of both fenoterol and H2O2. In addition, detection of mitochondrial ROS indicates that fenoterol triggers a slow increase in ROS which is prevented by rotenone, but rotenone has no impact on the inotropic effect of fenoterol. We suggest that stimulation of ß2-adrenoceptor with fenoterol causes the activation of NADPH-oxidase and after the agonist removal extracellularly generated ROS penetrates into the cell, increasing the atrial contractions probably via Ca2+ channels.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Função do Átrio Esquerdo/fisiologia , Cardiotônicos/farmacologia , Contração Miocárdica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Função do Átrio Esquerdo/efeitos dos fármacos , Masculino , Camundongos , Contração Miocárdica/fisiologia , Técnicas de Cultura de Órgãos
12.
J Neurosci ; 28(49): 13216-22, 2008 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19052213

RESUMO

The role of cGMP-dependent pathways in synaptic vesicle recycling in motor nerve endings during prolonged high-frequency stimulation was studied at frog neuromuscular junctions using electrophysiological and fluorescent methods. An increase of intracellular cGMP concentration (8-Br-cGMP or 8-pCPT-cGMP) significantly reduced the cycle time for synaptic vesicles through the enhancement of vesicular traffic rate from the recycling pool to the readily releasable pool and acceleration of fast endocytosis. Pharmacological inhibition of soluble guanylate cyclase or protein kinase G slowed down the rate of recycling as well as endocytosis of synaptic vesicles. The results suggest that cGMP-PKG-dependent pathway serves a significant function in the control of vesicular cycle in frog motor terminals.


Assuntos
GMP Cíclico/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Endocitose/fisiologia , Corantes Fluorescentes , Guanilato Ciclase/metabolismo , Microscopia de Fluorescência , Neurônios Motores/ultraestrutura , Junção Neuromuscular/ultraestrutura , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/ultraestrutura , Compostos de Piridínio , Compostos de Amônio Quaternário , Rana ridibunda , Transdução de Sinais/fisiologia , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Potenciais Sinápticos/fisiologia , Vesículas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...