Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1274, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988319

RESUMO

Selenocompounds (SeCs) are promising therapeutic agents for a wide range of diseases including cancer. The treatment results are heterogeneous and dependent on both the chemical species and the concentration of SeCs. Moreover, the mechanisms of action are poorly revealed, which most probably is due to the detection methods where the quantification is based on the total selenium as an element. To understand the mechanisms underlying the heterogeneous cytotoxicity of SeCs and to determine their pharmacokinetics, we investigated selenium speciation of six SeCs representing different categories using liquid chromatography-mass spectrometry (LC-MS) and X-ray absorption spectroscopy (XAS) and the cytotoxicity using leukemic cells. SeCs cytotoxicity was correlated with albumin binding degree as revealed by LC-MS and XAS. Further analysis corroborated the covalent binding between selenol intermediates of SeCs and albumin thiols. On basis of the Se-S model, pharmacokinetic properties of four SeCs were for the first time profiled. In summary, we have shown that cytotoxic SeCs could spontaneously transform into selenol intermediates that immediately react with albumin thiols through Se-S bond. The heterogeneous albumin binding degree may predict the variability in cytotoxicity. The present knowledge will also guide further kinetic and mechanistic investigations in both experimental and clinical settings.


Assuntos
Albuminas/química , Selênio/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Animais , Cistina/análogos & derivados , Cistina/farmacocinética , Cistina/farmacologia , Humanos , Masculino , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Compostos Organosselênicos/farmacocinética , Compostos Organosselênicos/farmacologia , Ligação Proteica/efeitos dos fármacos , Selenometionina/farmacocinética , Selenometionina/farmacologia , Espectroscopia por Absorção de Raios X/métodos
2.
Eur J Pharm Sci ; 143: 105158, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740394

RESUMO

N-acetylcysteine amide (NACA) is the amide derivative of N-acetylcysteine (NAC) that is rapidly converted to NAC after systemic administration. It has emerged as a promising thiol antioxidant for multiple indications; however, the pharmacokinetic property is yet unclear due to lack of an accurate quantification method. The present investigation aimed to develop an analytical method for simultaneous quantification of NACA and NAC in plasma. A new reagent (2-(methylsulfonyl)-5-phenyl-1,3,4-oxadiazole, MPOZ) was introduced for thiol stabilization during sample processing and storage. Further, we utilized tris (2-carboxyethyl) phosphine (TCEP) to reduce the oxidized forms of NACA and NAC. After derivatization, NACA-MPOZ and NAC-MPOZ were quantified using liquid chromatography-mass spectrometry (LC-MS). The new method was validated and found to have high specificity, linearity, accuracy, precision, and recovery for the quantification of NACA and NAC in plasma. Furthermore, the formed derivatives of NACA and NAC were stable for 48 h under different conditions. The method was utilized in pharmacokinetic study which showed that the bioavailability of NACA is significantly higher than NAC (67% and 15%, respectively). The pharmacokinetic of NACA obeyed a two-compartment open model. The glutathione (GSH)-replenishing capacity was found to be three to four-fold higher after the administration of NACA compared to that observed after the administration of NAC. In conclusion, the present method is simple, robust and reproducible, and can be utilized in both experimental and clinical studies. NACA might be considered as a prodrug for NAC. Furthermore, this is the first report describing the pharmacokinetics and bioavailability of NACA in mouse.


Assuntos
Acetilcisteína/análogos & derivados , Pró-Fármacos/farmacocinética , Acetilcisteína/sangue , Acetilcisteína/farmacocinética , Animais , Disponibilidade Biológica , Feminino , Glutationa/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Compostos de Sulfidrila/química
3.
J Med Chem ; 61(6): 2533-2551, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29485874

RESUMO

Recent literature has both suggested and questioned MTH1 as a novel cancer target. BAY-707 was just published as a target validation small molecule probe for assessing the effects of pharmacological inhibition of MTH1 on tumor cell survival, both in vitro and in vivo. (1) In this report, we describe the medicinal chemistry program creating BAY-707, where fragment-based methods were used to develop a series of highly potent and selective MTH1 inhibitors. Using structure-based drug design and rational medicinal chemistry approaches, the potency was increased over 10,000 times from the fragment starting point while maintaining high ligand efficiency and drug-like properties.


Assuntos
Antineoplásicos/farmacologia , Enzimas Reparadoras do DNA/antagonistas & inibidores , Morfolinas/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Células CACO-2 , Permeabilidade da Membrana Celular , Desenho de Fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/metabolismo , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Morfolinas/química , Morfolinas/farmacocinética , Ratos , Ratos Wistar , Relação Estrutura-Atividade
4.
ACS Chem Biol ; 12(8): 1986-1992, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28679043

RESUMO

MTH1 is a hydrolase responsible for sanitization of oxidized purine nucleoside triphosphates to prevent their incorporation into replicating DNA. Early tool compounds published in the literature inhibited the enzymatic activity of MTH1 and subsequently induced cancer cell death; however recent studies have questioned the reported link between these two events. Therefore, it is important to validate MTH1 as a cancer dependency with high quality chemical probes. Here, we present BAY-707, a substrate-competitive, highly potent and selective inhibitor of MTH1, chemically distinct compared to those previously published. Despite superior cellular target engagement and pharmacokinetic properties, inhibition of MTH1 with BAY-707 resulted in a clear lack of in vitro or in vivo anticancer efficacy either in mono- or in combination therapies. Therefore, we conclude that MTH1 is dispensable for cancer cell survival.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Sistemas de Liberação de Medicamentos , Morfolinas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CACO-2 , Células Cultivadas , Enzimas Reparadoras do DNA/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Hepatócitos/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Morfolinas/química , Neoplasias/fisiopatologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Ratos
5.
Anal Chem ; 89(14): 7586-7592, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28640579

RESUMO

p-Xyleneselenocyanate (p-XSC) is one of the most investigated selenium compounds in cancer-prevention and -therapy. Despite the potent anticancer property, there is still no proper method to perform the quantitative analysis of p-XSC in plasma. In this investigation, we aimed at developing a method based on liquid chromatography-mass spectrometry (LC-MS) for the measurement of p-XSC in plasma. Direct deproteinization was first used to extract parent p-XSC from plasma, but failed to achieve high recovery rate (<2%) due to formation of selenium-sulfur bond between p-XSC and plasma protein. To overcome this problem, we modified the extraction method to three steps: (1) break the selenium-sulfur bond by tris(2-carboxyethyl)phosphine; (2) stabilize the newly formed intermediate selenol by N-ethylmaleimide; (3) deproteinization. This three-step method efficiently recovered bound p-XSC by more than 75%. In in vivo study, p-XSC was injected intravenously into mice and plasma was collected for LC-MS analysis. Consistently, p-XSC was undetectable in its parent form, whereas the bound form was readily quantified, employing the modified extraction method. In summary, we describe a novel, robust, and sensitive method for quantification of p-XSC in plasma. The present method will enable pharmacokinetic and pharmacodynamic studies of p-XSC in both clinical and preclinical settings.

6.
J Med Chem ; 56(11): 4181-205, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23126626

RESUMO

By use of iterative design aided by predictive models for target affinity, brain permeability, and hERG activity, novel and diverse compounds based on cyclic amidine and guanidine cores were synthesized with the goal of finding BACE-1 inhibitors as a treatment for Alzheimer's disease. Since synthesis feasibility had low priority in the design of the cores, an extensive synthesis effort was needed to make the relevant compounds. Syntheses of these compounds are reported, together with physicochemical properties and structure-activity relationships based on in vitro data. Four crystal structures of diverse amidines binding in the active site are deposited and discussed. Inhibitors of BACE-1 with 3 µM to 32 nM potencies in cells are shown, together with data on in vivo brain exposure levels for four compounds. The results presented show the importance of the core structure for the profile of the final compounds.


Assuntos
Amidinas/síntese química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Guanidinas/síntese química , Amidinas/química , Amidinas/farmacologia , Secretases da Proteína Precursora do Amiloide/química , Animais , Ácido Aspártico Endopeptidases/química , Encéfalo/metabolismo , Células CHO , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Simulação por Computador , Cricetinae , Cristalografia por Raios X , Cães , Estabilidade de Medicamentos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Guanidinas/química , Guanidinas/farmacologia , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Estereoisomerismo
7.
J Med Chem ; 55(21): 9297-311, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23017051

RESUMO

Amino-2H-imidazoles are described as a new class of BACE-1 inhibitors for the treatment of Alzheimer's disease. Synthetic methods, crystal structures, and structure-activity relationships for target activity, permeability, and hERG activity are reported and discussed. Compound (S)-1m was one of the most promising compounds in this report, with high potency in the cellular assay and a good overall profile. When guinea pigs were treated with compound (S)-1m, a concentration and time dependent decrease in Aß40 and Aß42 levels in plasma, brain, and CSF was observed. The maximum reduction of brain Aß was 40-50%, 1.5 h after oral dosing (100 µmol/kg). The results presented highlight the potential of this new class of BACE-1 inhibitors with good target potency and with low effect on hERG, in combination with a fair CNS exposure in vivo.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Encéfalo/efeitos dos fármacos , Imidazóis/síntese química , Fragmentos de Peptídeos/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Animais , Ácido Aspártico Endopeptidases/química , Encéfalo/metabolismo , Linhagem Celular , Cristalografia por Raios X , Cães , Feminino , Cobaias , Humanos , Imidazóis/química , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/líquido cefalorraquidiano , Permeabilidade , Estereoisomerismo , Relação Estrutura-Atividade , Distribuição Tecidual
8.
Bioorg Med Chem Lett ; 21(13): 3871-6, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21641215

RESUMO

Blocking of certain sodium channels is considered to be an attractive mechanism to treat chronic pain conditions. Phenyl isoxazole carbamate 1 was identified as a potent and selective Na(V)1.7 blocker. Structural analogues of 1, both carbamates, ureas and amides, were proven to be useful in establishing the structure-activity relationship and improving ADME related properties. Amide 24 showed a good overall in vitro profile, that translated well to rat in vivo PK.


Assuntos
Carbamatos/química , Isoxazóis/química , Isoxazóis/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Administração Oral , Animais , Carbamatos/administração & dosagem , Carbamatos/uso terapêutico , Humanos , Bombas de Infusão , Concentração Inibidora 50 , Isoxazóis/administração & dosagem , Isoxazóis/uso terapêutico , Estrutura Molecular , Dor/tratamento farmacológico , Ratos , Bloqueadores dos Canais de Sódio/administração & dosagem , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...