Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 81(16): 3410-3421.e4, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34192510

RESUMO

Chromatosomes play a fundamental role in chromatin regulation, but a detailed understanding of their structure is lacking, partially due to their complex dynamics. Using single-molecule DNA unzipping with optical tweezers, we reveal that linker histone interactions with DNA are remarkably extended, with the C-terminal domain binding both DNA linkers as far as approximately ±140 bp from the dyad. In addition to a symmetrical compaction of the nucleosome core governed by globular domain contacts at the dyad, the C-terminal domain compacts the nucleosome's entry and exit. These interactions are dynamic, exhibit rapid binding and dissociation, are sensitive to phosphorylation of a specific residue, and are crucial to determining the symmetry of the chromatosome's core. Extensive unzipping of the linker DNA, which mimics its invasion by motor proteins, shifts H1 into an asymmetric, off-dyad configuration and triggers nucleosome decompaction, highlighting the plasticity of the chromatosome structure and its potential regulatory role.


Assuntos
Cromatina/genética , DNA/genética , Histonas/genética , Nucleossomos/genética , Fenômenos Biofísicos/genética , Proteínas de Ligação a DNA/genética , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica/genética , Conformação Proteica , Imagem Individual de Molécula
2.
J Math Biol ; 44(1): 79-86, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11942526

RESUMO

The ability of a few stem-cells to repopulate a severely damaged bone marrow (BM) guarantees the stability of our physical existence, and facilitates successful BM transplantations. What are the basic properties of stem cells that enable the maintenance of the system's homeostasis? In the present work we attempt to answer this question by investigating a discrete (in time and phase-space) dynamical system. The model we present is shown to retrieve the essential properties of homeostasis, as reflected in BM functioning, namely, (a) to produce a constant amount of mature cells, and (b) to be capable of returning to this production after very large perturbations. The mechanism guaranteeing the fulfillment of these properties is extrinsic--negative feedback control in the micro-environment--and does not need additional stochastic assumptions. Nevertheless, the existence of a simple intrinsic control mechanism, a clock which determines the switch to differentiation, ascertains that the system does not admit non-trivial extinction states. This result may help clarifying some of the controversy about extrinsic versus intrinsic control over stem cell fate. It should be stressed that all conclusions are valid for any system containing progenitor and maturing cells.


Assuntos
Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Modelos Biológicos , Células da Medula Óssea/citologia , Homeostase/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA