Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson (Gott) ; 2(2): 827-834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905214

RESUMO

Nuclear spin noise spectroscopy in the absence of radio frequency pulses was studied under the influence of pulsed field gradients (PFGs) on pure and mixed liquids. Under conditions where the radiation-damping-induced line broadening is smaller than the gradient-dependent inhomogeneous broadening, echo responses can be observed in difference spectra between experiments employing pulsed field gradient pairs of the same and opposite signs. These observed spin noise gradient echoes (SNGEs) were analyzed through a simple model to describe the effects of transient phenomena. Experiments performed on high-resolution nuclear magnetic resonance (NMR) probes demonstrate how refocused spin noise behaves and how it can be exploited to determine sample properties. In bulk liquids and their mixtures, transverse relaxation times and translational diffusion constants can be determined from SNGE spectra recorded following tailored sequences of magnetic field gradient pulses.

2.
Magn Reson (Gott) ; 1(2): 165-173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37904820

RESUMO

We report three-dimensional spin noise imaging (SNI) of nuclear spin density from spin noise data acquired by Faraday detection. Our approach substantially extends and improves the two-dimensional SNI method for excitation-less magnetic resonance tomography reported earlier (Müller and Jerschow, 2006). This proof of principle was achieved by taking advantage of the particular continuous nature of spin noise acquired in the presence of constant magnitude magnetic field gradients and recent advances in nuclear spin noise spectroscopy acquisition as well as novel processing techniques. In this type of projection-reconstruction-based spin noise imaging the trade-off between signal-to-noise ratio (or image contrast) and resolution can be adjusted a posteriori during processing of the original time-domain data by iterative image reconstruction in a unique way not possible in conventional rf-pulse-dependent magnetic resonance imaging (MRI). The 3D SNI is demonstrated as a proof of concept on a commercial 700 MHz high-resolution NMR spectrometer, using a 3D-printed polymeric phantom immersed in water.

3.
Chemphyschem ; 19(8): 907-912, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29399935

RESUMO

A major breakthrough in speed and sensitivity of 2 D spin-noise-detected NMR is achieved owing to a new acquisition and processing scheme called "double block usage" (DBU) that utilizes each recorded noise block in two independent cross-correlations. The mixing, evolution, and acquisition periods are repeated head-to-tail without any recovery delays and well-known building blocks of multidimensional NMR (constant-time evolution and quadrature detection in the indirect dimension as well as pulsed field gradients) provide further enhancement and artifact suppression. Modified timing of the receiver electronics eliminates spurious random excitation. We achieve a threefold sensitivity increase over the original snHMQC (spin-noise-detected heteronuclear multiple quantum correlation) experiment (K. Chandra et al., J. Phys. Chem. Lett. 2013, 4, 3853) and demonstrate the feasibility of spin-noise-detected long-range correlation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...