Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 11119, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042405

RESUMO

Light polarization can conveniently encode information. Yet, the ability to tailor polarized optical fields is notably demanding but crucial to develop practical methods for data encryption and to gather fundamental insights into light-matter interactions. Here we demonstrate the dynamic manipulation of the chirality of light at telecom wavelengths. This unique possibility is enrooted in the multivalley nature of the conduction band of a conventional semiconductor, namely Ge. In particular, we demonstrate that optical pumping suffices to govern the kinetics of spin-polarized carriers and eventually the chirality of the radiative recombination. We found that the polarized component of the emission can be remarkably swept through orthogonal eigenstates without magnetic field control or phase shifter coupling. Our results provide insights into spin-dependent phenomena and offer guiding information for the future selection and design of spin-enhanced photonic functionalities of group IV semiconductors.

2.
Nat Commun ; 7: 13886, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000670

RESUMO

Control of electron spin coherence via external fields is fundamental in spintronics. Its implementation demands a host material that accommodates the desirable but contrasting requirements of spin robustness against relaxation mechanisms and sizeable coupling between spin and orbital motion of the carriers. Here, we focus on Ge, which is a prominent candidate for shuttling spin quantum bits into the mainstream Si electronics. So far, however, the intrinsic spin-dependent phenomena of free electrons in conventional Ge/Si heterojunctions have proved to be elusive because of epitaxy constraints and an unfavourable band alignment. We overcome these fundamental limitations by investigating a two-dimensional electron gas in quantum wells of pure Ge grown on Si. These epitaxial systems demonstrate exceptionally long spin lifetimes. In particular, by fine-tuning quantum confinement we demonstrate that the electron Landé g factor can be engineered in our CMOS-compatible architecture over a range previously inaccessible for Si spintronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...