Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 40(3): 737-42, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22251653

RESUMO

It is well known that increasing the ambient temperature increases the metabolic rate and consequently, the foraging rate of most insects. However, temperature experienced during the immature stages of insects affects their adult size (an inverse relationship). Because body size is generally correlated to foraging success, we hypothesized that temperature indirectly influences the foraging efficiency of adult insects through developmental effects. We first investigated the role of parasitoid: host body size ratio on the handling time of Aphidius colemani (Viereck) (Hymenoptera: Braconidae), then tested the prediction that increasing temperature during immature development increases the handling time of adults. As expected, parasitoids took longer to handle large aphids than small aphids. However, large parasitoids did not have shorter handling times than small parasitoids except when attacking large (adult) aphids. Developmental temperature had the predicted effect on parasitoids: Individuals reared at 25°C were smaller than those insects reared at 15°C. Parasitoids reared at 15°C had similar short handling times for both first instar and adult aphids, whereas parasitoids reared at 25°C took longer to handle adult aphids than first instar aphids. The size-mediated effect of temperature through development on parasitoid efficiency was opposite to the more familiar direct effect of temperature through metabolic rate. We conclude that the net effect of temperature on foraging insects will depend on its relative influence on immature and adult stages.


Assuntos
Afídeos/parasitologia , Tamanho Corporal , Interações Hospedeiro-Parasita , Temperatura , Vespas/fisiologia , Animais , Feminino , Masculino
2.
Oecologia ; 64(3): 287-294, 1984 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28311441

RESUMO

The flowers of the annual herb Impatiens capensis have distinct male and female phases. The male phase lasts four times as long as the female phase, and male flowers contain about 50% more nectar than female flowers. This suggests that the bulk of allocation to the flower is designed to ensure the dispersal of pollen rather than the fertilization of ovules. Honeybees, wasps and bumble bees all land on male flowers more often than would be expected by chance, and, having landed, wasps and bumble bees are more likely to enter a male flower than a female flower. The frequency of male flowers in the diet therefore exceeds their frequency in the population. This preference, although strong and consistent, is only partial, since some female flowers are included in the diet. We propose two hypotheses to account for the observed partial preference, the first based on competition between bees for flowers, and the second asserting that the bees detect nectar levels directly without using floral gender as a cue. The results of an experiment in which the most obvious gender cue, the androecium, was removed are consistent with the second hypothesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...