Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Periodontal Res ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747072

RESUMO

Dental implant surfaces and their unique properties can interact with the surrounding oral tissues through epigenetic cues. The present scoping review provides current perspectives on surface modifications of dental implants, their impact on the osseointegration process, and the interaction between implant surface properties and epigenetics, also in peri-implant diseases. Findings of this review demonstrate the impact of innovative surface treatments on the epigenetic mechanisms of cells, showing promising results in the early stages of osseointegration. Dental implant surfaces with properties of hydrophilicity, nanotexturization, multifunctional coatings, and incorporated drug-release systems have demonstrated favorable outcomes for early bone adhesion, increased antibacterial features, and improved osseointegration. The interaction between modified surface morphologies, different chemical surface energies, and/or release of molecules within the oral tissues has been shown to influence epigenetic mechanisms of the surrounding tissues caused by a physical-chemical interaction. Epigenetic changes around dental implants in the state of health and disease are different. In conclusion, emerging approaches in surface modifications for dental implants functionalized with epigenetics have great potential with a significant impact on modulating bone healing during osseointegration.

2.
J Periodontal Res ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644743

RESUMO

AIMS: GBR membranes have various surface properties designed to elicit positive responses in regenerative clinical procedures; dental clinicians attempt to employ techniques to prevent the direct interaction of contaminated oral fluids with these biomaterials. However, saliva is uninterruptedly exhibited in oral surgical procedures applying GBR membranes, suggesting a persistent interaction with biomaterials and the surrounding oral tissues. This fundamental study aimed to investigate potential alterations in the physical, chemical, and key biological properties of membranes for guided bone regeneration (GBR) caused by isolated early interaction with human saliva. METHODS: A reproducible step-by-step protocol for collecting and interacting human saliva with membranes was developed. Subsequently, membranes were evaluated for their physicochemical properties, protein quantification, DNA, and 16S rRNA levels viability of two different cell lines at 1 and 7 days, and ALP activity. Non-interacted membranes and pure saliva of donors were applied as controls. RESULTS: Qualitative morphological alterations were noticed; DNA extraction and 16S quantification revealed significantly higher values. Furthermore, the viability of HGF-1 and MC3T3-E1 cells was significantly (p < .05) reduced following saliva interaction with biodegradable membranes. Saliva contamination did not prejudice PTFE membranes significantly in any biological assay. CONCLUSIONS: These outcomes demonstrated a susceptible response of biodegradable membranes to isolated early human saliva interaction, suggesting impairment of structural morphology, reduced viability to HGF-1 and MC3T3-E1, and higher absorption/adherence of DNA/16S rRNA. As a result, clinical oral procedures may need corresponding refinements.

3.
Front Cell Infect Microbiol ; 13: 1183959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614559

RESUMO

Introduction: Chronic infections are a major clinical challenge in hard-to-heal wounds and implanted devices. Pseudomonas aeruginosa is a common causative pathogen that produces numerous virulence factors. Due to the increasing problem of antibiotic resistance, new alternative treatment strategies are needed. Quorum sensing (QS) is a bacterial communication system that regulates virulence and dampens inflammation, promoting bacterial survival. QS inhibition is a potent strategy to reduce bacterial virulence and alleviate the negative impact on host immune response. Aim: This study investigates how secreted factors from P. aeruginosa PAO1, cultured in the presence or absence of the QS inhibitor sodium salicylate (NaSa), influence host immune response. Material and methods: In vitro, THP-1 macrophages and neutrophil-like HL-60 cells were used. In vivo, discs of titanium were implanted in a subcutaneous rat model with local administration of P. aeruginosa culture supernatants. The host immune response to virulence factors contained in culture supernatants (+/-NaSa) was characterized through cell viability, migration, phagocytosis, gene expression, cytokine secretion, and histology. Results: In vitro, P. aeruginosa supernatants from NaSa-containing cultures significantly increased THP-1 phagocytosis and HL-60 cell migration compared with untreated supernatants (-NaSa). Stimulation with NaSa-treated supernatants in vivo resulted in: (i) significantly increased immune cell infiltration and cell attachment to titanium discs; (ii) increased gene expression of IL-8, IL-10, ARG1, and iNOS, and (iii) increased GRO-α protein secretion and decreased IL-1ß, IL-6, and IL-1α secretion, as compared with untreated supernatants. Conclusion: In conclusion, treating P. aeruginosa with NaSa reduces the production of virulence factors and modulates major immune events, such as promoting phagocytosis and cell migration, and decreasing the secretion of several pro-inflammatory cytokines.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Animais , Ratos , Salicilato de Sódio/farmacologia , Titânio , Transporte Biológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...