Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Photochem Photobiol ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37675862

RESUMO

Sunlight, and more specifically the UV component, induces several skin damages, including sunburns, erythema and photoaging. The purpose of this work is to set up an ex vivo human skin model to assess the capacity of active principles in protecting skin from the deleterious effects of solar radiation. Ex vivo human skin biopsies were cultured in an air-liquid interface and exposed to solar-simulated radiation (SSR, 300-750 nm). L-Carnosine (0.2% and 2%) was applied topically to be tested as photoprotective compound. The effect on oxidative stress induction, photoaging and skin transcriptional profile was assessed by evaluating reactive oxygen species, advanced glycosylation end products formation and gene expression changes. In our model, SSR increases ROS production and AGE accumulation and affects the expression of genes related to oxidative stress, pigmentation, immunity, inflammation and photoaging. Among these pathways, 11 genes were selected as biomarkers to evaluate the skin solar radiation response. Results showed that L-Carnosine provides effective prevention against solar radiation damages reducing ROS, AGEs and mitigating the modulation of the selected biomarker genes. In conclusion, we report that our ex vivo skin model is a valuable system to assess the consequences of solar light exposure and the capacity of topically applied L-Carnosine to counteract them.

2.
PLoS One ; 13(3): e0193479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29494643

RESUMO

CK2 is a pleiotropic S/T protein kinase (formerly known as casein kinase 2) which is attracting increasing interest as therapeutic target, and the identification of its substrates is a crucial step in determining its involvement in different pathological conditions. We recently found that S131 of Akt2 (homologous to the well established CK2 target S129 of Akt1) is not phosphorylated by CK2 either in vitro or in vivo, although the consensus sequence recognized by CK2 (S/T-x-x-E/D/pS/pT) is conserved in it. Here, by exploiting synthetic peptides, in cell transfection experiments, and computational analysis, we show that a single sequence element, a T at position n+1, hampers phosphorylation, causing an α-helix structure organization which prevents the recognition of its own consensus by CK2. Our results highlight the role of negative determinants as crucial modulators of CK2 targeting and corroborate the concept that Akt1 and Akt2 display isoform specific features. Experiments with synthetic peptides suggest that Akt2 S131 could be phosphorylated by kinases of the Plk (Polo-like kinase) family, which are insensitive to the presence of the n+1 T. The low phylogenetic conservation of the Akt2 sequence around S131, as opposed to the extremely well-conserved Akt1 homologous sequence, would indicate a dominant positive role in the selective pressure only for the Akt1 phosphoacceptor site committed to undergo phosphorylation by CK2. By contrast, Akt2 S131 may mediate the response to specific physio/pathological conditions, being consequently shielded against basal CK2 targeting.


Assuntos
Caseína Quinase II/metabolismo , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Sítios de Ligação , Caseína Quinase II/química , Sequência Consenso , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosforilação , Filogenia , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética
3.
Biomed Res Int ; 2015: 185736, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26558259

RESUMO

We compare the cellular efficacy of two selective and cell permeable inhibitors of the antiapoptotic kinase CK2. One inhibitor, CX-4945, is already in clinical trials as antitumor drug, while the other, TDB, has been recently successfully employed to demonstrate the implication of CK2 in cellular (dis)regulation. We found that, upon treatment of cancer cells with these compounds, the extent of inhibition of endocellular CK2 is initially comparable but becomes significantly different after the inhibitors are removed from the cellular medium: while in CX-4945 treated cells CK2 activity is restored to control level after 24 h, in the case of TDB it is still strongly reduced after 4 days from removal. The biological effects of the two inhibitors have been analyzed by performing clonogenic, spheroid formation, and wound-healing assays: we observed a permanent inhibition of cell survival and migration in TDB-treated cells even after the inhibitor removal, while in the case of CX-4945 only its maintenance for the whole duration of the assay insured a persisting effect. We suggest that the superiority of TDB in maintaining kinase activity inhibited and perpetuating the consequent effects is an added value to be considered when planning new therapies based on CK2 targeting.


Assuntos
Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Naftiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Fenazinas , Esferoides Celulares/citologia
4.
Biochem J ; 471(3): 415-30, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26349539

RESUMO

By derivatizing the purely competitive CK2 inhibitor N1-(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)-propane-1,3-diamine (K137) at its 3-amino position with a peptidic fragment composed of three or four glutamic or aspartic acid residues, a new family of bisubstrate inhibitors has been generated whose ability to simultaneously interact with both the ATP and the phosphoacceptor substrate-binding sites has been probed by running mixed competition kinetics and by mutational mapping of the kinase residues implicated in substrate recognition. The most effective bisubstrate inhibitor, K137-E4, interacts with three functional regions of the kinase: the hydrophobic pocket close to the ATP-binding site, the basic residues of the p+1 loop that recognizes the acidic determinant at position n+1 and the basic residues of α-helixC that recognize the acidic determinant at position n+3. Compared with the parent inhibitor (K137), K137-E4 is severalfold more potent (IC50 25 compared with 130 nM) and more selective, failing to inhibit any other kinase as drastically as CK2 out of 140 enzymes, whereas 35 kinases are inhibited more potently than CK2 by K137. K137-E4 is unable to penetrate the cell and to inhibit endogenous CK2, its pro-apoptotic efficacy being negligible compared with cell-permeant inhibitors; however, it readily inhibits ecto-CK2 on the outer cell surface, reducing the phosphorylation of several external phosphoproteins. Inhibition of ecto-CK2 by K137-E4 is accompanied by a slower migration of cancer cells as judged by wound healing assays. On the basis of the cellular responses to K137-E4, we conclude that ecto-CK2 is implicated in cell motility, whereas its contribution to the pro-survival role of CK2 is negligible.


Assuntos
Benzimidazóis/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Estrutura Secundária de Proteína/efeitos dos fármacos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Benzimidazóis/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Cinética , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo
5.
Biochim Biophys Acta ; 1843(9): 1865-74, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24769357

RESUMO

Akt (also known as PKB) is a survival kinase frequently up-regulated in cancer; three isoforms of Akt exist, and among them Akt1 and Akt2 are the most widely and highly expressed. They share the same structure and activation mechanism and have many overlapping functions; nevertheless isoform-specific roles and substrates have been reported, which are expected to rely on sequence diversities. In particular, a special role in differentiating Akt1 and Akt2 isoforms has been assigned to the linker region, a short segment between the PH and the catalytic domains. We have previously found that a residue in the linker region (Ser129) is directly phosphorylated by protein kinase CK2 in Akt1; the phosphorylation of the homologous residue in Akt2 (Ser131) has never been analyzed. Here we show that Akt2, endogenously or ectopically expressed in different cell lines, is not phosphorylated on Ser131 by CK2, while in vitro recombinant Akt2 is a CK2 substrate. These data support the hypothesis that in vivo a steric hindrance occurs which prevents the access to the CK2 site. Additionally, we have found that Ser129 phosphorylation is involved in the recognition of the Akt1-specific substrate palladin; this observation provides an explanation of why Akt2, lacking Ser131 phosphorylation in the linker region, has a low efficiency in targeting palladin. CK2-dependent phosphorylation is therefore a crucial event which, discriminating between Akt1 and Akt2, can account for different substrate specificities, and, more in general, for fine tuning of Akt activity in the control of isoform-dependent processes.


Assuntos
Caseína Quinase II/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Dissulfetos/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Desnaturação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Recombinantes/metabolismo
6.
Cell Mol Life Sci ; 71(16): 3173-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24442476

RESUMO

It has been proposed that dual inhibitors of protein kinases CK2 and PIM-1 are tools particularly valuable to induce apoptosis of cancer cells, a property, however, implying cell permeability, which is lacking in the case of selective CK2/PIM-1 inhibitors developed so far. To fill this gap, we have derivatized the scaffold of the promiscuous CK2 inhibitor TBI with a deoxyribose moiety, generating TDB, a selective, cell-permeable inhibitor of CK2 and PIM-1. Here, we shed light on the structural features underlying the potency and narrow selectivity of TDB by exploiting a number of TDB analogs and by solving the 3D structure of the TDB/CK2 complex at 1.25 Å resolution, one of the highest reported so far for this kinase. We also show that the cytotoxic efficacy of TDB is almost entirely due to apoptosis, is accompanied by parallel inhibition of cellular CK2 and PIM-1, and is superior to both those observed combining individual inhibitors of CK2 and PIM-1 and by treating cells with the CK2 inhibitor CX4945. These data, in conjunction with the observations that cancer cells are more susceptible than non-cancer cells to TDB and that such a sensitivity is maintained in a multi-drug resistance background, highlight the pharmacological potential of this compound.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Benzimidazóis/farmacocinética , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Halogenação , Humanos , Cinética , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-pim-1/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Relação Estrutura-Atividade
7.
Biochem J ; 452(1): 131-7, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23438105

RESUMO

It has been reported that pyrvinium pamoate (PyrPam), an FDA (U.S. Food and Drug Administration)-approved anthelminthic drug, is a potent inhibitor of Wnt signalling by a mechanism which implies the direct activation of protein kinase CK1α. In the present paper, we provide data ruling out any direct stimulatory effect of PyrPam on CK1, by showing that the catalytic activity of CK1α and those of its isoforms δ and γ1 are not significantly affected by PyrPam when tested with the aid of specific peptide and protein substrates. Accordingly, cell treatment with PyrPam has no significant effect on the phosphorylation of ß-catenin Ser(45). By contrast, the phosphorylation of ß-catenin Thr(41) is increased upon cell treatment with PyrPam, through a mechanism that implies the upstream dephosphorylation of Akt/PKB (protein kinase B) and of GSK3 (glycogen synthase kinase 3). It can be concluded from the present study that PyrPam is not a bona fide activator of CK1, its perturbation of cell signalling pathways being mediated by a complex mechanism initiated by a fall in Akt phosphorylation whose down-regulation promotes reduced phosphorylation and activation of GSK3. Consistent with this, lysates of cells treated with PyrPam display enhanced protein phosphorylation which is unaffected by CK1 inhibition, while disappearing upon inhibition of GSK3. Our data are consistent with the observation that PyrPam ultimately inhibits Wnt signalling despite its lack of efficacy on CK1.


Assuntos
Caseína Quinase I/metabolismo , Regulação para Baixo/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Compostos de Pirvínio/farmacologia , Animais , Cricetinae , Regulação para Baixo/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Biochim Biophys Acta ; 1834(7): 1402-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23360763

RESUMO

Advantage has been taken of the relative promiscuity of commonly used inhibitors of protein kinase CK2 to develop compounds that can be exploited for the selective inhibition of druggable kinases other than CK2 itself. Here we summarize data obtained by altering the scaffold of CK2 inhibitors to give rise to novel selective inhibitors of DYRK1A and to a powerful cell permeable dual inhibitor of PIM1 and CK2. In the former case one of the new compounds, C624 (naphto [1,2-b]benzofuran-5,9-diol) displays a potency comparable to that of the first-in-class DYRK1A inhibitor, harmine, lacking however the drawback of drastically inhibiting monoamine oxidase-A (MAO-A) as harmine does. On the other hand the promiscuous CK2 inhibitor 4,5,6,7-tetrabromo-1H-benzimidazole (TBI,TBBz) has been derivatized with a sugar moiety to generate a 1-(ß-D-2'-deoxyribofuranosyl)-4,5,6,7-tetrabromo-1H-benzimidazole (TDB) compound which inhibits PIM1 and CK2 with comparably high efficacy (IC50 values<100nM) and remarkable selectivity. TDB, unlike other dual PIM1/CK2 inhibitors described in the literature is readily cell permeable and displays a cytotoxic effect on cancer cells consistent with concomitant inhibition of both its onco-kinase targets. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Assuntos
Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Adipócitos/enzimologia , Benzimidazóis/química , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Sítios de Ligação , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Harmina/química , Harmina/farmacologia , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Quinases Dyrk
9.
PLoS One ; 7(11): e49193, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145120

RESUMO

CK2 is a pleiotropic protein kinase, which regulates many survival pathways and plays a global anti-apoptotic function. It is highly expressed in tumor cells, and is presently considered a promising therapeutic target. Among the many inhibitors available for this kinase, the recently developed CX-4945 and CX-5011 have proved to be very potent, selective and effective in inducing cell death in tumor cells; CX-4945 has recently entered clinical trials. However, no data are available on the efficacy of these compounds to overcome drug resistance, a major reasons of cancer therapy failure. Here we address this point, by studying their effects in several tumor cell lines, each available as variant R resistant to drug-induced apoptosis, and normal-sensitive variant S. We found that the inhibition of endogenous CK2 was very similar in S and R treated cells, with more than 50% CK2 activity reduction at sub-micromolar concentrations of CX-4945 and CX-5011. A consequent apoptotic response was induced both in S and R variants of each pairs. Moreover, the combined treatment of CX-4945 plus vinblastine was able to sensitize to vinblastine R cells that are otherwise almost insensitive to this conventional antitumor drug. Consistently, doxorubicin accumulation in multidrug resistant (MDR) cells was greatly increased by CX-4945.In summary, we demonstrated that all the R variants are sensitive to CX-4945 and CX-5011; since some of the treated R lines express the extrusion pump Pgp, often responsible of the MDR phenotype, we can also conclude that the two inhibitors can successfully overcome the MDR phenomenon.


Assuntos
Caseína Quinase II , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Apoptose/efeitos dos fármacos , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Humanos , Naftiridinas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fenazinas , Vimblastina/farmacologia
10.
PLoS One ; 7(2): e31293, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347458

RESUMO

BACKGROUND: Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. CONCLUSIONS/SIGNIFICANCE: On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL.


Assuntos
Perfilação da Expressão Gênica , Linfócitos/efeitos da radiação , MicroRNAs/análise , RNA Mensageiro/análise , Radiação Ionizante , Ausência de Peso , Astronautas , Dano ao DNA , Humanos , MicroRNAs/biossíntese , RNA Mensageiro/biossíntese , Voo Espacial , Transcriptoma
11.
Mutat Res ; 663(1-2): 32-9, 2009 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-19428367

RESUMO

Cell response to ionising radiation depends, besides on genetic and physiological features of the biological systems, on environmental conditions occurring during DNA repair. Many data showed that microgravity, experienced by astronauts during space flights or modeled on Earth, causes apoptosis, cytoskeletal alteration, cell growth inhibition, increased frequency of mutations and chromosome aberrations. In this study, we analysed the progression of the rejoining of double strand breaks (DSBs) in human peripheral blood lymphocytes (PBLs) irradiated with gamma-rays and incubated in static condition (1 g) or in modeled microgravity (MMG). gamma-H2AX foci formation and disappearance, monitored during the repair incubation, showed that the kinetics of DSBs rejoining was different in the two gravity conditions. The fraction of foci-positive cells decreased slower in MMG than in 1 g at 6 and 24 h after irradiation (P<0.01) and the mean number of gamma-H2AX foci per nucleus was significantly higher in MMG than in 1g at the same time-points (P<0.001). In the same samples we determined apoptotic level and the rate of DSB rejoining during post-irradiation incubation. A significant induction of apoptosis was observed in MMG at 24 h after irradiation (P<0.001), whereas at shorter times the level of apoptosis was slightly higher in MMG respect to 1 g. In accordance with the kinetics of gamma-H2AX foci, the slower rejoining of radiation-induced DSBs in MMG was observed by DNA fragmentation analyses during the repair incubation; the data of pulsed-field gel electrophoresis assay showed that the fraction of DNA released in the gel was significantly higher in PBL incubated in MMG after irradiation with respect to cells maintained in 1 g. Our results provide evidences that MMG incubation during DNA repair delayed the rate of radiation-induced DSB rejoining, and increased, as a consequence, the genotoxic effects of ionising radiation.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Raios gama , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Modelos Biológicos , Ausência de Peso , Apoptose/efeitos da radiação , Western Blotting , DNA/metabolismo , Eletroforese em Gel de Campo Pulsado , Histonas , Humanos , Cinética , Linfócitos/citologia , Transdução de Sinais/efeitos da radiação
12.
Cuad. méd.-soc. (Santiago de Chile) ; 32(2): 22-7, ago. 1991.
Artigo em Espanhol | LILACS | ID: lil-104583

RESUMO

El foco y eje fundamental del proceso de curación, del sistema de medicina mapuche, es la reafirmación de la vigencia de la identidad e integración del individuo con su red social (familiar y comunitaria); por este motivo la estrategia de curación de la machi enfatiza el proceso de socialización de la enfermedad. El paciente no debe ser aislado de su contexto social, la familia- tanto nuclear como extensa- participa activamente en las fases de diagnóstico y gestión de la curación. Todo el proceso está sustentado en la formulación y verificación de hipótesis sobre el contexto y causas de la enfermedad. En todos los momentos posteriores que caracterizan el desarrollo de la patología, la machi acompañará su evolución indicando oportunamente las acciones a emprender y explicando cada fase por la que atraviesa el enfermo. Cuestión, esta última, fundamental dado el carácter dramático que adquiere la enfermedad en la medida en que es el reflejo de una ruptura en el ámbito de la cultura, dentro o en las relaciones que estructuran la identidad de los sujetos. Los resultados anteriores nos han llevado a formular la necesidad de un enfoque en el que los conceptos y categorias propios de la cultura, en este caso mapuche, sean recogidos y utilizados por el médico tratante, sea dentro de la APS como de la atención especializada en salud mental por psiquiatras o psicólogos. Estamos ciertos que, de ser así, se produciría un vuelco significativo en la relación médico-paciente con una subsecuente superación de escollos que dificultan tanto esta relación, como el éxito de los tratamientos


Assuntos
Indígenas Sul-Americanos , Saúde Mental , Chile
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...