Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 54(2): 287-95, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16332327

RESUMO

The survival and transfer of Listeria innocua and Clostridium sporogenes, used as surrogates of the food borne pathogens Listeria monocytogenes and Clostridium botulinum, were quantitatively assessed under field conditions. In the soil, spores of C. sporogenes declined by less than 0.7 log cycles within 16 months and were detected on parsley leaves throughout the experiment. In contrast, L. innocua in the soil declined by 7 log cycles in 90 days and was detected on leaves in low numbers (>0.04 MPN g(-1)) during the first 30 days. Rates of decline in soil were similar in the laboratory at 20 degrees C for two strains of L. innocua and L. monocytogenes ; and in the field for L. innocua over two different years. L. innocua survived better in winter, indicating an important influence of temperature. The major cause of transfer of L. innocua from soil to parsley leaves was splashing due to rain and irrigation. As few as 1 CFU g(-1) Listeria in soil led to contamination of parsley leaves. Internalisation of Listeria through parsley roots was not observed. Under the conditions of soil and climate studied, a delay of 90 days between application of potentially contaminated fertilizer and harvest should be sufficient to eliminate L. monocytogenes.


Assuntos
Clostridium/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Fertilizantes , Listeria/crescimento & desenvolvimento , Esterco/microbiologia , Petroselinum/microbiologia , Esgotos/microbiologia , Microbiologia do Solo
2.
Microbiol Mol Biol Rev ; 66(4): 592-616, table of contents, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12456784

RESUMO

Research interest in microbial biodiversity over the past 25 years has increased markedly as microbiologists have become interested in the significance of biodiversity for ecological processes and as the industrial, medical, and agricultural applications of this diversity have evolved. One major challenge for studies of microbial habitats is how to account for the diversity of extremely large and heterogeneous populations with samples that represent only a very small fraction of these populations. This review presents an analysis of the way in which the field of microbial biodiversity has exploited sampling, experimental design, and the process of hypothesis testing to meet this challenge. This review is based on a systematic analysis of 753 publications randomly sampled from the primary scientific literature from 1975 to 1999 concerning the microbial biodiversity of eight habitats related to water, soil, plants, and food. These publications illustrate a dominant and growing interest in questions concerning the effect of specific environmental factors on microbial biodiversity, the spatial and temporal heterogeneity of this biodiversity, and quantitative measures of population structure for most of the habitats covered here. Nevertheless, our analysis reveals that descriptions of sampling strategies or other information concerning the representativeness of the sample are often missing from publications, that there is very limited use of statistical tests of hypotheses, and that only a very few publications report the results of multiple independent tests of hypotheses. Examples are cited of different approaches and constraints to experimental design and hypothesis testing in studies of microbial biodiversity. To prompt a more rigorous approach to unambiguous evaluation of the impact of microbial biodiversity on ecological processes, we present guidelines for reporting information about experimental design, sampling strategies, and analyses of results in publications concerning microbial biodiversity.


Assuntos
Bactérias , Ecossistema , Projetos de Pesquisa , Bases de Dados como Assunto , Ecologia , Publicações
3.
J Food Prot ; 65(5): 806-13, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12030292

RESUMO

The saprophytic Paenibacillus and Bacillus spp. found in cooked chilled foods may have an effect on the growth of Clostridium botulinum, a major microbiological hazard, especially for pasteurized vacuum-packaged products. Culture supernatants of 200 strains of Paenibacillus and Bacillus strains isolated from commercial cooked chilled foods containing vegetables were screened for activity against C. botulinum type A, proteolytic type B, and type E strains in a well diffusion assay. Nineteen strains were positive against C. botulinum. Among those, seven Paenibacillus polymyxa strains showed the highest antibotulinal activity and the largest antimicrobial spectrum against C. botulinum strains. The antibotulinal activity was evaluated throughout the growth of a representative strain of the positive P. polymyxa strains. The antimicrobial activity was detected in the culture supernatant from late-log/early stationary phase of the bacteria, which occurred after 7 to 10 days of incubation at 10 degrees C and after 2 to 3 days at 20 degrees C in nutrient broth and in vegetable purées under aerobic or anaerobic conditions. In co-cultures with the positive strain of P. polymyxa in nutrient broth and vegetable purées, a C. botulinum type E strain was inhibited whenever P. polymyxa reached stationary phase and produced its antimicrobial activity before C. botulinum began its exponential growth phase. The antimicrobial activity of P. polymyxa against C. botulinum was attributed to the production of antimicrobial peptides resistant to high temperature and acidity. Other gram-positive and -negative bacteria (Escherichia coli, Streptococcus mutans, Leuconostoc mesenteroides, and Bacillus subtilis) were also sensitive to these antimicrobial peptides.


Assuntos
Bacillus/fisiologia , Toxinas Botulínicas/biossíntese , Clostridium botulinum/crescimento & desenvolvimento , Verduras/microbiologia , Clostridium botulinum/metabolismo , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Esporos Bacterianos , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...