Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(2): 28, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381414

RESUMO

Purpose: There are numerous reports of a distinctive maculopathy in adults exposed to pentosan polysulfate sodium (PPS), a drug prescribed to treat bladder discomfort associated with interstitial cystitis. We tested whether PPS treatment of mice injures RPE or retina to provide insight into the etiology of the human condition. Methods: Mice were fed PPS-supplemented chow over 14 months. RPE and retinal function was assessed by electroretinography (ERG) regularly. Following euthanasia, one eye was used for sagittal sectioning and histology, the contralateral for RPE flatmounting. ZO-1 positive RPE cell borders were imaged using confocal microscopy and cell morphology was analyzed using CellProfiler. Results: After 10 months of PPS treatment, we observed diminution of mean scotopic c-wave amplitudes. By 11 months, we additionally observed diminutions of mean scotopic a- and b-wave amplitudes. Analysis of flatmounts revealed altered RPE cell morphology and morphometrics in PPS-treated mice, including increased mean en face cell area and geometric eccentricity, decreased RPE cell solidity and extent, and cytosolic translocation of alpha-catenin, all markers of RPE cell stress. Sex and regional differences were seen in RPE flatmount measures. Shortened photoreceptor outer segments were also observed. Conclusions: PPS treatment reduced RPE and later retina function as measured by ERG, consistent with a primary RPE injury. Post-mortem analysis revealed extensive RPE pleomorphism and polymegathism and modest photoreceptor changes. We conclude that PPS treatment of mice causes slowly progressing RPE and photoreceptor damage and thus may provide a useful model for some retinal pathologies.


Assuntos
Poliéster Sulfúrico de Pentosana , Doenças Retinianas , Adulto , Humanos , Animais , Camundongos , Retina , Eletrorretinografia , Causalidade
2.
Pharmaceutics ; 13(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208613

RESUMO

Glaucoma etiology often includes retinal ganglion cell (RGC) death associated with elevated intraocular pressure (IOP). However, even when IOP is managed well, disease can progress. It is thus important to develop therapeutic approaches that directly protect RGCs in an IOP-independent manner. Compromised nicotinamide adenine dinucleotide (NAD+) metabolism occurs in neurodegenerative diseases, including models of glaucoma. Here we report testing the protective effects of prophylactically systemically administered nicotinamide riboside (NR), a NAD+ precursor, in a mouse model of acute RGC damage (optic nerve crush (ONC)), and in a chronic model of RGC degeneration (ocular hypertension induced by intracameral injection of microbeads). For both models, treatment enhanced RGC survival, assessed by counting cells in retinal flatmounts immunostained for Brn3a+. In the ONC model, treatment preserved RGC function, as assessed by pattern electroretinogram, and suppressed retinal inflammation, as assessed by immunofluorescence staining of retinal fixed sections for glial fibrillary acidic protein (GFAP). This is the first study to demonstrate that systemic treatment with NR is protective in acute and chronic models of RGC damage. The protection is significant and, considering that NR is highly bioavailable in and well-tolerated by humans, may support the proposition of prospective human subject studies.

3.
Transl Vis Sci Technol ; 10(8): 10, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34251426

RESUMO

Purpose: We aimed to explore differences in the NaIO3-elicited responses of retinal pigment epithelium (RPE) and other retinal cells associated with mouse strains and dosing regimens. Methods: One dose of NaIO3 at 10 or 15 mg/kg was given intravenously to adult male C57BL/6J and 129/SV-E mice. Control animals were injected with PBS. Morphologic and functional changes were characterized by spectral domain optical coherence tomography, electroretinography, histologic, and immunofluorescence techniques. Results: Injection with 10 mg/kg of NaIO3 did not cause consistent RPE or retinal changes in either strain. Administration of 15 mg/kg of NaIO3 initially induced a large transient increase in scotopic electroretinography a-, b-, and c-wave amplitudes within 12 hours of injection, followed by progressive structural and functional degradation at 3 days after injection in C57BL/6J mice and at 1 week after injection in 129/SV-E mice. RPE cell loss occurred in a large posterior-central lesion with a ring-like transition zone of abnormally shaped cells starting 12 hours after NaIO3 treatment. Conclusions: NaIO3 effects depended on the timing, dosage, and mouse strain. The RPE in the periphery was spared from damage compared with the central RPE. The large transient increase in the electroretinography was remarkable. Translational Relevance: This study is a phase T1 translational research study focusing on the development and validation of a mouse model of RPE damage. It provides a detailed foundation for future research, informing choices of mouse strain, dosage, and time points to establish NaIO3-induced RPE damage.


Assuntos
Iodatos , Epitélio Pigmentado da Retina , Animais , Eletrorretinografia , Iodatos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Invest Ophthalmol Vis Sci ; 61(10): 47, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32852543

RESUMO

Purpose: Maintaining levels of nicotinamide adenine dinucleotide (NAD+), a coenzyme critical for cellular energetics and biosynthetic pathways, may be therapeutic in retinal disease because retinal NAD+ levels decline during retinal damage and degeneration. The purpose of this study was to investigate whether systemic treatment with nicotinamide riboside (NR), a NAD+ precursor that is orally deliverable and well-tolerated by humans, is protective in a mouse model of light-induced retinal degeneration. Methods: Mice were injected intraperitoneally with vehicle or NR the day before and the morning of exposure to degeneration-inducing levels of light. Retinal function was assessed by electroretinography and in vivo retinal morphology and inflammation was assessed by optical coherence tomography. Post mortem retina sections were assessed for morphology, TUNEL, and inflammatory markers Iba1 and GFAP. Retinal NAD+ levels were enzymatically assayed. Results: Exposure to degeneration-inducing levels of light suppressed retinal NAD+ levels. Mice undergoing light-induced retinal degeneration exhibited significantly suppressed retinal function, severely disrupted photoreceptor cell layers, and increased apoptosis and inflammation in the outer retina. Treatment with NR increased levels of NAD+ in retina and prevented these deleterious outcomes. Conclusions: This study is the first to report the protective effects of NR treatment in a mouse model of retinal degeneration. The positive outcomes, coupled with human tolerance to NR dosing, suggest that maintaining retinal NAD+ via systemic NR treatment should be further explored for clinical relevance.


Assuntos
Niacinamida/análogos & derivados , Degeneração Retiniana/prevenção & controle , Animais , Modelos Animais de Doenças , Eletrorretinografia , Imunofluorescência , Injeções Intraperitoneais , Luz/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NAD/metabolismo , Niacinamida/administração & dosagem , Niacinamida/uso terapêutico , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Compostos de Piridínio , Retina/diagnóstico por imagem , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/efeitos da radiação , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/etiologia , Tomografia de Coerência Óptica
5.
Adv Exp Med Biol ; 1185: 451-455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884653

RESUMO

Physical exercise is protective in rodent models of retinal injury and disease. Data suggest that this is in part mediated by brain-derived neurotrophic factor (BDNF) signal transduction. It has been hypothesized that exercised-induced neuroprotection may be mediated by increases in circulating lactate that in turn alter BDNF secretion. We therefore tested whether mice undergoing a treadmill running regimen previously shown to be protective in a mouse model of retinal degeneration (RD) have increased serum levels of lactate. Lactate levels in exercised and non-exercised mice were statistically indistinguishable. A role for circulating lactate in exercise-induced retinal protection is unsupported.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Láctico/sangue , Neuroproteção , Condicionamento Físico Animal , Degeneração Retiniana/prevenção & controle , Animais , Camundongos , Retina , Transdução de Sinais
6.
Mol Vis ; 25: 462-476, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523123

RESUMO

Purpose: We previously reported that modest running exercise protects photoreceptors in mice undergoing light-induced retinal degeneration and in the rd10 mouse model of autosomal recessive retinitis pigmentosa (arRP). We hypothesized that exercise would protect against other types of retinal degeneration, specifically, in autosomal dominant inherited disease. We tested whether voluntary running wheel exercise is protective in a retinal degeneration mouse model of class B1 autosomal dominant RP (adRP). Methods: C57BL/6J mice heterozygous for the mutation in I307N rhodopsin (Rho) (also known as RHOTvrm4/+, or Tvrm4) are normal until exposed to brief but bright light, whereupon rod photoreceptor degeneration ensues. I307N Rho mice were given access to free spinning (active) or locked (inactive) running wheels. Five weeks later, half of each cohort was treated with 0.2% atropine eye drops and exposed to white LED light (6,000 lux) for 5 min, then returned to maintenance housing with wheels. At 1 week or 4 weeks after induction, retinal and visual function was assessed with electroretinogram (ERG) and optomotor response (OMR). In vivo retinal morphology was assessed with optical coherence tomography (OCT), and fundus blue autofluorescence assessed using a scanning laser ophthalmoscope. The mice were then euthanized, and the eyes fixed for paraffin sectioning or flatmounting. The paraffin sections were stained with hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) to assess retina morphology and apoptosis. Half of the flatmounts were stained for ZO-1 and α-catenin to assess RPE cell structure and stress. (We previously reported that translocation of α-catenin from cell membranes into the cytosol indicates RPE cell stress.) The remaining flatmounts were stained for ZO-1 and Iba-1 to assess the RPE cell size and shape, and inflammatory responses. Results: In vivo measures revealed that induction of the I307N Rho degeneration decreased retinal and visual function, decreased the thickness of the retina and photoreceptor layers, and increased the number of blue autofluorescence spots at the level of the photoreceptor-RPE interface. Post-mortem analyses showed that induction caused loss of photoreceptors in the central retinal region, and increased TUNEL labeling in the outer nuclear layer (ONL). The RPE was disrupted 1 week after induction, with changes in cell size and shape accompanied by increased α-catenin translocation and Iba-1 staining. These outcomes were partially but statistically significantly prevented in the exercised mice. The exercised mice that underwent induced I307N Rho degeneration exhibited retinal function and visual function measures that were statistically indistinguishable from that of the uninduced mice, and compared to the unexercised induced mice, had thicker retina and photoreceptor layers, and decreased numbers of subretinal autofluorescent spots. Post-mortem, the retina sections from the exercised mice that had undergone induced I307N Rho degeneration exhibited numbers of photoreceptors that were statistically indistinguishable from those of uninduced mice. Similarly, exercise largely precluded a degeneration-induced increase in TUNEL-positive cells in the ONL. Finally, the RPE of the exercised mice appeared normal, with a regular cell shape and size, and little to no alpha-catenin translocation or Iba-1 immunosignal. Conclusions: Voluntary wheel running partially protected against retinal degeneration and inflammation, and RPE disruption in a model of inducible adRP. This is the first report of exercise protection in an adult adRP animal model. It is also the first report of an RPE phenotype in the I307N Rho mouse. These findings add to a growing literature reporting that modest whole-body exercise is protective across a wide range of models of retinal damage and disease, and further highlights the potential for this accessible and inexpensive therapeutic intervention in the ophthalmic clinic.


Assuntos
Genes Dominantes , Mutação/genética , Condicionamento Físico Animal , Degeneração Retiniana/genética , Degeneração Retiniana/prevenção & controle , Retinose Pigmentar/genética , Rodopsina/genética , Animais , Modelos Animais de Doenças , Inflamação/patologia , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/fisiopatologia , Retinose Pigmentar/fisiopatologia , Visão Ocular
7.
Adv Exp Med Biol ; 854: 443-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427444

RESUMO

To compare patterns of gene expression following preconditioning cyclic light rearing versus preconditioning aerobic exercise. BALB/C mice were preconditioned either by rearing in 800 lx 12:12 h cyclic light for 8 days or by running on treadmills for 9 days, exposed to toxic levels of light to cause light-induced retinal degeneration (LIRD), then sacrificed and retinal tissue harvested. Subsets of mice were maintained for an additional 2 weeks and for assessment of retinal function by electroretinogram (ERG). Both preconditioning protocols partially but significantly preserved retinal function and morphology and induced similar leukemia inhibitory factor (LIF) gene expression pattern. The data demonstrate that exercise preconditioning and cyclic light preconditioning protect photoreceptors against LIRD and evoke a similar pattern of retinal LIF gene expression. It may be that similar stress response pathways mediate the protection provided by the two preconditioning modalities.


Assuntos
Fotoperíodo , Condicionamento Físico Animal/fisiologia , Degeneração Retiniana/genética , Transcriptoma/genética , Animais , Eletrorretinografia , Fator Inibidor de Leucemia/genética , Luz/efeitos adversos , Masculino , Camundongos Endogâmicos BALB C , Retina/metabolismo , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/etiologia , Degeneração Retiniana/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...