Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119610, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37913845

RESUMO

BACKGROUND: We tested whether enhancing the capacity for calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling would delay fatigue of excitation-induced calcium release and improve contractile characteristics of skeletal muscle during fatiguing exercise. METHODS: Fast and slow type muscle, gastrocnemius medialis (GM) and soleus (SOL), of rats and mouse interosseus (IO) muscle fibers, were transfected with pcDNA3-based plasmids for rat α and ß CaMKII or empty controls. Levels of CaMKII, its T287-phosphorylation (pT287-CaMKII), and phosphorylation of components of calcium release and re-uptake, ryanodine receptor 1 (pS2843-RyR1) and phospholamban (pT17-PLN), were quantified biochemically. Sarcoplasmic calcium in transfected muscle fibers was monitored microscopically during trains of electrical excitation based on Fluo-4 FF fluorescence (n = 5-7). Effects of low- (n = 6) and high- (n = 8) intensity exercise on pT287-CaMKII and contractile characteristics were studied in situ. RESULTS: Co-transfection with αCaMKII-pcDNA3/ßCaMKII-pcDNA3 increased α and ßCaMKII levels in SOL (+45.8 %, +250.5 %) and GM (+40.4 %, +89.9 %) muscle fibers compared to control transfection. High-intensity exercise increased pT287-ßCaMKII and pS2843-RyR1 levels in SOL (+269 %, +151 %) and GM (+354 %, +119 %), but decreased pT287-αCaMKII and p17-PLN levels in GM compared to SOL (-76 % vs. +166 %; 0 % vs. +128 %). α/ß CaMKII overexpression attenuated the decline of calcium release in muscle fibers with repeated excitation, and mitigated exercise-induced deterioration of rates in force production, and passive force, in a muscle-dependent manner, in correlation with pS2843-RyR1 and pT17-PLN levels (|r| > 0.7). CONCLUSION: Enhanced capacity for α/ß CaMKII signaling improves fatigue-resistance of active and passive contractile muscle properties in association with RyR1- and PLN-related improvements in sarcoplasmic calcium release.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Ratos , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sinalização do Cálcio , Contração Muscular
2.
Front Physiol ; 13: 933792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148310

RESUMO

Homozygous carriers of the deletion allele in the gene for angiotensin-converting enzyme (ACE-DD) demonstrate an elevated risk to develop inactivity-related type II diabetes and show an overshoot of blood glucose concentration with enduring exercise compared to insertion allele carriers. We hypothesized that ACE-DD genotypes exhibit a perturbed activity of signaling processes governing capillary-dependent glucose uptake in vastus lateralis muscle during exhaustive cycling exercise, which is associated with the aerobic fitness state. 27 healthy, male white Caucasian subjects (26.8 ± 1.1 years; BMI 23.6 +/- 0.6 kg m-2) were characterized for their aerobic fitness based on a threshold of 50 ml O2 min-1 kg-1 and the ACE-I/D genotype. Subjects completed a session of exhaustive one-legged exercise in the fasted state under concomitant measurement of cardiorespiratory function. Capillary blood and biopsies were collected before, and ½ and 8 h after exercise to quantify glucose and lipid metabolism-related compounds (lipoproteins, total cholesterol, ketones) in blood, the phosphorylation of 45 signaling proteins, muscle glycogen and capillaries. Effects of aerobic fitness, ACE-I/D genotype, and exercise were assessed with analysis of variance (ANOVA) under the hypothesis of a dominant effect of the insertion allele. Exertion with one-legged exercise manifested in a reduction of glycogen concentration ½ h after exercise (-0.046 mg glycogen mg-1 protein). Blood glucose concentration rose immediately after exercise in association with the ACE-I/D genotype (ACE-DD: +26%, ACE-ID/II: +6%) and independent of the fitness state (p = 0.452). Variability in total cholesterol was associated with exercise and fitness. In fit subjects, the phosphorylation levels of glucose uptake-regulating kinases [AKT-pT308 (+156%), SRC-pY419, p38α-pT180/T182, HCK-pY411], as well as cytokine/angiotensin 1-7 signaling factors [(STAT5A-pY694, STAT5B-pY699, FYN-pY420, EGFR-pY1086] were higher in angiotensin converting enzyme I-allele carriers than ACE-DD genotypes after exercise. Conversely, the AKT-S473 phosphorylation level (+117%) and angiotensin 2's blood concentration (+191%) were higher in ACE-DD genotypes. AKT-S473 phosphorylation levels post-exercise correlated to anatomical parameters of muscle performance and metabolic parameters (p < 0.05 and │r│>0.70). The observations identify reciprocal alterations of S473 and T308 phosphorylation of AKT as gatekeeper of a post-translational dysregulation of transcapillary glucose uptake in ACE-DD genotypes which may be targeted in personalized approaches to mitigate type II diabetes.

3.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35631388

RESUMO

Cathepsin B is a lysosomal cysteine protease that plays an important role in cancer, atherosclerosis, and other inflammatory diseases. The suppression of cathepsin B can inhibit tumor growth. The overexpression of cathepsin B can be used for the imaging and photodynamic therapy (PDT) of cancer. PDT targeting of cathepsin B may have a significant potential for selective destruction of cells with high cathepsin B activity. We synthesized a cathepsin B-cleavable polymeric photosensitizer prodrug (CTSB-PPP) that releases pheophorbide a (Pha), an efficient photosensitizer upon activation with cathepsin B. We determined the concentration dependant uptake in vitro, the safety, and subsequent PDT-induced toxicity of CTSB-PPP, and ROS production. CTSB-PPP was cleaved in bone marrow cells (BMCs), which express a high cathepsin B level. We showed that the intracellular fluorescence of Pha increased with increasing doses (3-48 µM) and exerted significant dark toxicity above 12 µM, as assessed by MTT assay. However, 6 µM showed no toxicity on cell viability and ex vivo vascular function. Time-dependent studies revealed that cellular accumulation of CTSB-PPP (6 µM) peaked at 60 min of treatment. PDT (light dose: 0-100 J/cm2, fluence rate: 100 mW/cm2) was applied after CTSB-PPP treatment (6 µM for 60 min) using a special frontal light diffuser coupled to a diode laser (671 nm). PDT resulted in a light dose-dependent reduction in the viability of BMCs and was associated with an increased intracellular ROS generation. Fluorescence and ROS generation was significantly reduced when the BMCs were pre-treated with E64-d, a cysteine protease inhibitor. In conclusion, we provide evidence that CTSB-PPP showed no dark toxicity at low concentrations. This probe could be utilized as a potential imaging agent to identify cells or tissues with cathepsin B activity. CTSB-PPP-based PDT results in effective cytotoxicity and thus, holds great promise as a therapeutic agent for achieving the selective destruction of cells with high cathepsin B activity.

4.
Cells ; 11(9)2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35563686

RESUMO

To obtain meaningful results of hepatic stellate cell (HSC) function, it is crucial to use highly pure HSC populations. Our aim was to optimize HSC isolation from mice livers without exploiting the characteristically transient vitamin A autofluorescence of HSC. HSCs were isolated from C57BL/6 mice using a two-step collagenase digestion and Nycodenz gradient separation followed by CD11b-negative sorting step in order to remove contaminating macrophages and dendritic cells. Isolated cells were analyzed for yield, viability, purity, and potential new markers using immunofluorescence and flow cytometry. We obtained a yield of 350,595 ± 100,773 HSC per mouse liver and a viability of isolated cells of 92.4 ± 3.1%. We observed a low macrophage/dendritic cell contamination of 1.22 ± 0.54%. Using flow cytometry, we demonstrated that CD38 was expressed at the surface of HSC subpopulations and that all expressed intracellular markers specific for HSC in the liver. This isolation method, avoiding fluorescent activated cell sorting (FACS), allowed isolation of HSCs with high purity. Further, flow cytometry analysis suggests that CD38 may be a reliable marker of HSCs and may include subpopulations of HSCs without retinoid droplets.


Assuntos
Células Estreladas do Fígado , Fígado , Animais , Biomarcadores/metabolismo , Separação Celular/métodos , Citometria de Fluxo , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
5.
Biomedicines ; 10(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35327330

RESUMO

Interactions between macrophages, cardiac cells and the extracellular matrix are crucial for cardiac repair following myocardial infarction (MI). We hypothesized that cell-based treatments might modulate these interactions. After validating that bone marrow cells (BMC) associated with fibrin lowered the infarct extent and improved cardiac function, we interrogated the influence of fibrin, as a biologically active scaffold, on the secretome of BMC and the impact of their association on macrophage fate and cardiomyoblast proliferation. In vitro, BMC were primed with fibrin (F-BMC). RT-PCR and proteomic analyses showed that fibrin profoundly influenced the gene expression and the secretome of BMCs. Consequently, the secretome of F-BMC increased the spreading of cardiomyoblasts and showed an alleviated immunomodulatory capacity. Indeed, the proliferation of anti-inflammatory macrophages was augmented, and the phenotype of pro-inflammatory switched as shown by downregulated Nos2, Il6 and IL1b and upregulated Arg1, CD163, Tgfb and IL10. Interestingly, the secretome of F-BMC educated-macrophages stimulated the incorporation of EdU in cardiomyoblasts. In conclusion, our study provides evidence that BMC/fibrin-based treatment improved cardiac structure and function following MI. In vitro proofs-of-concept reveal that the F-BMC secretome increases cardiac cell size and promotes an anti-inflammatory response. Thenceforward, the F-BMC educated macrophages sequentially stimulated cardiac cell proliferation.

6.
Artif Intell Med ; 120: 102161, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34629149

RESUMO

Early-stage detection of cutaneous melanoma can vastly increase the chances of cure. Excision biopsy followed by histological examination is considered the gold standard for diagnosing the disease, but requires long high-cost processing time, and may be biased, as it involves qualitative assessment by a professional. In this paper, we present a new machine learning approach using raw data for skin Raman spectra as input. The approach is highly efficient for classifying benign versus malignant skin lesions (AUC 0.98, 95% CI 0.97-0.99). Furthermore, we present a high-performance model (AUC 0.97, 95% CI 0.95-0.98) using a miniaturized spectral range (896-1039 cm-1), thus demonstrating that only a single fragment of the biological fingerprint Raman region is needed for producing an accurate diagnosis. These findings could favor the future development of a cheaper and dedicated Raman spectrometer for fast and accurate cancer diagnosis.


Assuntos
Melanoma , Neoplasias Cutâneas , Biópsia , Humanos , Aprendizado de Máquina , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Análise Espectral Raman
7.
Am J Sports Med ; 49(14): 3970-3980, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34714701

RESUMO

BACKGROUND: The injection of mesenchymal stem cells (MSCs) mitigates fat accumulation in released rotator cuff muscle after tendon repair in rodents. PURPOSE: To investigate whether the injection of autologous MSCs halts muscle-to-fat conversion after tendon repair in a large animal model for rotator cuff tendon release via regional effects on extracellular fat tissue and muscle fiber regeneration. STUDY DESIGN: Controlled laboratory study. METHODS: Infraspinatus (ISP) muscles of the right shoulder of Swiss Alpine sheep (n = 14) were released by osteotomy and reattached 16 weeks later without (group T; n = 6) or with (group T-MSC; n = 8) electropulse-assisted injection of 0.9 Mio fluorescently labeled MSCs as microtissues with media in demarcated regions; animals were allowed 6 weeks of recovery. ISP volume and composition were documented with computed tomography and magnetic resonance imaging. Area percentages of muscle fiber types, fat, extracellular ground substance, and fluorescence-positive tissue; mean cross-sectional area (MCSA) of muscle fibers; and expression of myogenic (myogenin), regeneration (tenascin-C), and adipogenic markers (peroxisome proliferator-activated receptor gamma [PPARG2]) were quantified in injected and noninjected regions after recovery. RESULTS: At 16 weeks after tendon release, the ISP volume was reduced and the fat fraction of ISP muscle was increased in group T (137 vs 185 mL; 49% vs 7%) and group T-MSC (130 vs 166 mL; 53% vs 10%). In group T-MSC versus group T, changes during recovery after tendon reattachment were abrogated for fat-free mass (-5% vs -29%, respectively; P = .018) and fat fraction (+1% vs +24%, respectively; P = .009%). The area percentage of fat was lower (9% vs 20%; P = .018) and the percentage of the extracellular ground substance was higher (26% vs 20%; P = .007) in the noninjected ISP region for group T-MSC versus group T, respectively. Regionally, MCS injection increased tenascin-C levels (+59%) and the water fraction, maintaining the reduced PPARG2 levels but not the 29% increased fiber MCSA, with media injection. CONCLUSION: In a sheep model, injection of autologous MSCs in degenerated rotator cuff muscle halted muscle-to-fat conversion during recovery from tendon repair by preserving fat-free mass in association with extracellular reactions and stopping adjuvant-induced muscle fiber hypertrophy. CLINICAL RELEVANCE: A relatively small dose of MSCs is therapeutically effective to halt fatty atrophy in a large animal model.


Assuntos
Células-Tronco Mesenquimais , Lesões do Manguito Rotador , Animais , Atrofia/patologia , Atrofia Muscular/patologia , Manguito Rotador/patologia , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/patologia , Lesões do Manguito Rotador/cirurgia , Ovinos , Tendões/patologia , Tenotomia
8.
Cells ; 10(3)2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800866

RESUMO

Primary hemostasis consists in the activation of platelets, which spread on the exposed extracellular matrix at the injured vessel surface. Secondary hemostasis, the coagulation cascade, generates a fibrin clot in which activated platelets and other blood cells get trapped. Active platelet-dependent clot retraction reduces the clot volume by extruding the serum. Thus, the clot architecture changes with time of contraction, which may have an important impact on the healing process and the dissolution of the clot, but the precise physiological role of clot retraction is still not completely understood. Since platelets are the only actors to develop force for the retraction of the clot, their distribution within the clot should influence the final clot architecture. We analyzed platelet distributions in intracoronary thrombi and observed that platelets and fibrin co-accumulate in the periphery of retracting clots in vivo. A computational mechanical model suggests that asymmetric forces are responsible for a different contractile behavior of platelets in the periphery versus the clot center, which in turn leads to an uneven distribution of platelets and fibrin fibers within the clot. We developed an in vitro clot retraction assay that reproduces the in vivo observations and follows the prediction of the computational model. Our findings suggest a new active role of platelet contraction in forming a tight fibrin- and platelet-rich boundary layer on the free surface of fibrin clots.


Assuntos
Coagulação Sanguínea , Plaquetas/química , Fibrina/química , Trombose Intracraniana/patologia , Modelos Estatísticos , Fenômenos Biomecânicos , Plaquetas/patologia , Retração do Coágulo , Simulação por Computador , Fibrina/ultraestrutura , Humanos , Trombose Intracraniana/cirurgia , Intervenção Coronária Percutânea/métodos
9.
Xenotransplantation ; 28(3): e12666, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33538027

RESUMO

Neonatal and juvenile porcine islet cell clusters (ICC) present an unlimited source for islet xenotransplantation to treat type 1 diabetes patients. We isolated ICC from pancreata of 14 days old juvenile piglets and characterized their maturation by immunofluorescence and insulin secretion assays. Multipotent mesenchymal stromal cells derived from exocrine tissue of same pancreata (pMSC) were characterized for their differentiation potential and ability to sustain ICC insulin secretion in vitro and in vivo. Isolation of ICC resulted in 142 ± 50 × 103 IEQ per pancreas. Immunofluorescence staining revealed increasing presence of insulin-positive beta cells between day 9 and 21 in culture and insulin content per 500IEC of ICC increased progressively over time from 1178.4 ± 450 µg/L to 4479.7 ± 1954.2 µg/L from day 7 to 14, P < .001. Highest glucose-induced insulin secretion by ICC was obtained at day 7 of culture and reached a fold increase of 2.9 ± 0.4 compared to basal. Expansion of adherent cells from the pig exocrine tissue resulted in a homogenous CD90+ , CD34- , and CD45- fibroblast-like cell population and differentiation into adipocytes and chondrocytes demonstrated their multipotency. Insulin release from ICC was increased in the presence of pMSC and dependent on cell-cell contact (glucose-induced fold increase: ICC alone: 1.6 ± 0.2; ICC + pMSC + contact: 3.2 ± 0.5, P = .0057; ICC + pMSC no-contact: 1.9 ± 0.3; theophylline stimulation: alone: 5.4 ± 0.7; pMSC + contact: 8.4 ± 0.9, P = .013; pMSC no-contact: 5.2 ± 0.7). After transplantation of encapsulated ICC using Ca2+ -alginate (alg) microcapsules into streptozotocin-induced diabetic and immunocompetent mice, transient normalization of glycemia was obtained up to day 7 post-transplant, whereas ICC co-encapsulated with pMSC did not improve glycemia and showed increased pericapsular fibrosis. We conclude that pMSC derived from juvenile porcine exocrine pancreas improves insulin secretion of ICC by direct cell-cell contact. For transplantation purposes, the use of pMSC to support beta-cell function will depend on the development of new anti-fibrotic polymers and/or on genetically modified pigs with lower immunogenicity.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Células-Tronco Mesenquimais , Pâncreas Exócrino , Animais , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Pâncreas/metabolismo , Pâncreas Exócrino/metabolismo , Suínos , Transplante Heterólogo
10.
J Cell Mol Med ; 22(5): 2580-2591, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29478261

RESUMO

Vascular Endothelial Growth Factor (VEGF) can induce normal or aberrant angiogenesis depending on the amount secreted in the microenvironment around each cell. Towards a possible clinical translation, we developed a Fluorescence Activated Cell Sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a desired specific VEGF level from heterogeneous primary populations. Here, we sought to induce safe and functional angiogenesis in ischaemic myocardium by cell-based expression of controlled VEGF levels. Human adipose stromal cells (ASC) were transduced with retroviral vectors and FACS purified to generate two populations producing similar total VEGF doses, but with different distributions: one with cells homogeneously producing a specific VEGF level (SPEC), and one with cells heterogeneously producing widespread VEGF levels (ALL), but with an average similar to that of the SPEC population. A total of 70 nude rats underwent myocardial infarction by coronary artery ligation and 2 weeks later VEGF-expressing or control cells, or saline were injected at the infarction border. Four weeks later, ventricular ejection fraction was significantly worsened with all treatments except for SPEC cells. Further, only SPEC cells significantly increased the density of homogeneously normal and mature microvascular networks. This was accompanied by a positive remodelling effect, with significantly reduced fibrosis in the infarcted area. We conclude that controlled homogeneous VEGF delivery by FACS-purified transduced ASC is a promising strategy to achieve safe and functional angiogenesis in myocardial ischaemia.


Assuntos
Infarto do Miocárdio/terapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Tecido Adiposo/citologia , Animais , Linhagem da Célula , Fibrose , Testes de Função Cardíaca , Humanos , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica , Ratos Nus , Transplante de Células-Tronco , Células Estromais/metabolismo
11.
J Vis Exp ; (128)2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28994792

RESUMO

Acute coronary syndrome resulting from coronary occlusion following atherosclerotic plaque development and rupture is the leading cause of death in the industrialized world. New Zealand White (NZW) rabbits are widely used as an animal model for the study of atherosclerosis. They develop spontaneous lesions when fed with atherogenic diet; however, this requires long time of 4 - 8 months. To further enhance and accelerate atherogenesis, a combination of atherogenic diet and mechanical endothelial injury is often employed. The presented procedure for inducing atherosclerotic plaques in rabbits uses a balloon catheter to disrupt the endothelium in the left iliac artery of NZW rabbits fed with atherogenic diet. Such mechanical damage caused by the balloon catheter induces a chain of inflammatory reactions initiating neointimal lipid accumulation in a time dependent fashion. Atherosclerotic plaque following balloon injury show neointimal thickening with extensive lipid infiltration, high smooth muscle cell content and presence of macrophage derived foam cells. This technique is simple, reproducible and produces plaque of controlled length within the iliac artery. The whole procedure is completed within 20 - 30 min. The procedure is safe with low mortality and also offers high success in obtaining substantial intimal lesions. The procedure of balloon catheter induced arterial injury results in atherosclerosis within two weeks. This model can be used for investigating the disease pathology, diagnostic imaging and to evaluate new therapeutic strategies.


Assuntos
Aterosclerose/etiologia , Aterosclerose/patologia , Oclusão com Balão/métodos , Modelos Animais de Doenças , Artéria Ilíaca/lesões , Artéria Ilíaca/patologia , Animais , Inflamação/patologia , Masculino , Coelhos
12.
Cardiovasc Ther ; 35(2)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27893195

RESUMO

Acute coronary syndrome is a life-threatening condition of utmost clinical importance, which, despite recent progress in the field, is still associated with high morbidity and mortality. Acute coronary syndrome results from a rupture or erosion of vulnerable atherosclerotic plaque with secondary platelet activation and thrombus formation, which leads to partial or complete luminal obstruction of a coronary artery. During the last decade, scientific evidence demonstrated that when an acute coronary event occurs, several nonculprit plaques are in a "vulnerable" state. Among the promising approaches, several investigations provided evidence of photodynamic therapy (PDT)-induced stabilization and regression of atherosclerotic plaque. Significant development of PDT strategies improved its therapeutic outcome. This review addresses PDT's pertinence and major problems/challenges toward its translation to a clinical reality.


Assuntos
Síndrome Coronariana Aguda/tratamento farmacológico , Doença da Artéria Coronariana/tratamento farmacológico , Vasos Coronários/efeitos dos fármacos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Placa Aterosclerótica , Pesquisa Translacional Biomédica , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/patologia , Animais , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Humanos , Fotoquimioterapia/efeitos adversos , Fármacos Fotossensibilizantes/efeitos adversos , Ruptura Espontânea , Nanomedicina Teranóstica/métodos , Resultado do Tratamento
13.
Front Physiol ; 7: 400, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672369

RESUMO

UNLABELLED: Photodynamic therapy (PDT), which is based on the activation of photosensitizers with light, can be used to reduce plaque burden. We hypothesized that intra-arterial photosensitizer administration and photo-activation will lead to high and rapid accumulation within the plaque with reduced systemic adverse effects. Thus, this "intra-arterial" PDT would be expected to have less side effects and due to the short time involved would be compatible with percutaneous coronary interventions. AIM: We characterized the dose-dependent uptake and efficacy of intra-arterial PDT using Liposomal Verteporfin (Visudyne®), efficient for cancer-PDT but not tested before for PDT of atherosclerosis. METHODS AND RESULTS: Visudyne® (100, 200, and 500 ng/ml) was perfused for 5-30 min in atherosclerotic aorta isolated from ApoE(-/-) mice. The fluorescence Intensity (FI) after 15 min of Visudyne® perfusion increased with doses of 100 (FI-5.5 ± 1.8), 200 (FI-31.9 ± 1.9) or 500 ng/ml (FI-42.9 ± 1.2). Visudyne® (500 ng/ml) uptake also increased with the administration time from 5 min (FI-9.8 ± 2.5) to 10 min (FI-23.3 ± 3.0) and 15 min (FI-42.9 ± 3.4) before reaching saturation at 30 min (FI-39.3 ± 2.4) contact. Intra-arterial PDT (Fluence: 100 and 200 J/cm(2), irradiance-334 mW/cm(2)) was applied immediately after Visudyne® perfusion (500 ng/ml for 15 min) using a cylindrical light diffuser coupled to a diode laser (690 nm). PDT led to an increase of ROS (Dihydroethidium; FI-6.9 ± 1.8, 25.3 ± 5.5, 43.4 ± 13.9) and apoptotic cells (TUNEL; 2.5 ± 1.6, 41.3 ± 15.3, 58.9 ± 6%), mainly plaque macrophages (immunostaining; 0.3 ± 0.2, 37.6 ± 6.4, 45.3 ± 5.4%) respectively without laser irradiation, or at 100 and 200 J/cm(2). Limited apoptosis was observed in the medial wall (0.5 ± 0.2, 8.5 ± 4.7, 15.3 ± 12.7%). Finally, Visudyne®-PDT was found to be associated with reduced vessel functionality (Myogram). CONCLUSION: We demonstrated that sufficient accumulation of Visudyne® within plaque could be achieved in short-time and therefore validated the feasibility of local intravascular administration of photosensitizer. Intra-arterial Visudyne®-PDT preferentially affected plaque macrophages and may therefore alter the dynamic progression of plaque development.

14.
J Vis Exp ; (118)2016 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-28060356

RESUMO

Myocardial infarction is defined as cardiomyocyte death due to prolonged ischemia; an inflammatory response and scar formation (fibrosis) follow the ischemic injury. Following the initial acute phase, chronic remodeling of the left ventricle (LV) modifies the structure and function of the heart. Permanent coronary ligation in small animals has been widely used as a reference model for a chronic model of MI. Thinning of the infarcted wall progressively develops to transmural fibrosis. Histological assessment of infarct size is commonly performed; nevertheless, a standardization of the methods for quantification is missing. Indeed, important methodological aspects, such as the number of sections analyzed and the sampling and quantification methods, are usually not described and therefore preclude comparison across investigations. Too often, quantification is performed on a single section obtained at the level of the papillary muscles. Because novel strategies aimed at reducing infarct expansion and remodeling are under investigation, there is an important need for the standardization of accurate heart sampling protocols. We describe an accurate method to quantify the infarct size using a systematic sampling of harvested rat heart and image analyses of trichromatic stained histological sections obtained from base to apex. We also provide evidence that calculating the expansion index (EI) allowed for infarct size assessment, taking into account changes of the left ventricle throughout the remodeling.


Assuntos
Fibrose/patologia , Infarto do Miocárdio/patologia , Animais , Ventrículos do Coração , Hipertrofia Ventricular Esquerda/etiologia , Infarto do Miocárdio/fisiopatologia , Músculos Papilares , Ratos , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular
15.
Front Physiol ; 6: 353, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26640441

RESUMO

UNLABELLED: Coronary artery ligations to induce myocardial infarction (MI) in mice and rats are widely used in preclinical investigation. However, myocardial ischemic damage and subsequent infarct size are highly variable. The lack of standardization of the model impairs the probability of effective translation to the clinic. Cardiac Troponin I (cTnI) is a major clinically relevant biomarker. AIM: In the present study, we investigated the prognostic value of cTnI for early estimation of the infarct size. METHODS AND RESULTS: Infarcts of different sizes were induced in mice and rats by ligation, at a random site, of the coronary artery. Kinetics of the plasma levels of cTnI were measured. Heart function was evaluated by echocardiography, the percentage of infarcted left ventricle and infarct expansion index were assessed from histological section. We observed that plasma cTnI level peaked at 24 h in the infarcted rats and between 24 and 48 h in mice. Sham operated animals had a level of cTnI below 15 ng/mL. Infarct expansion index (EI) assessed 4 weeks after ligation showed a large variation coefficient of 63 and 71% in rats and mice respectively. We showed a significative correlation between cTnI level and the EI demonstrating its predictive value for myocardial injury in small animal models. CONCLUSION: we demonstrated the importance of cTnI plasma level as a major early marker to assist in the optimal and efficient management of MI in laboratory animals model. The presented results stress the need for comparable biomarkers in the animal model and clinical trials for improved translation.

16.
Biomed Opt Express ; 6(7): 2552-61, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26203381

RESUMO

We perform subsurface ablation of atherosclerotic plaque using ultrafast pulses. Excised mouse aortas containing atherosclerotic plaque were ablated with ultrafast near-infrared (NIR) laser pulses. Optical coherence tomography (OCT) was used to observe the ablation result, while the physical damage was inspected in histological sections. We characterize the effects of incident pulse energy on surface damage, ablation hole size, and filament propagation. We find that it is possible to ablate plaque just below the surface without causing surface damage, which motivates further investigation of ultrafast ablation for subsurface atherosclerotic plaque removal.

17.
J Vis Exp ; (91): 51390, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25285992

RESUMO

Cardiac cell therapy has gained increasing interest and implantation of biomaterials associated with cells has become a major issue to optimize myocardial cell delivery. Rodent model of myocardial infarction (MI) consisting of Left Anterior Descending Artery (LAD) ligation has commonly been performed via a thoracotomy; a second open-heart surgery via a sternotomy has traditionally been performed for epicardial application of the treatment. Since the description of LAD ligation model, post-surgery mortality rate has dropped from 35-13%, however the second surgery has remained critical. In order to improve post-surgery recovery and reduce pain and infection, minimally invasive surgical procedures are presented. Two thoracotomies were performed, the initial one for LAD ligation and the second one for treatment epicardial administration. Biografts consisting of cells associated with solid or gel type matrices were applied onto the infarcted area. LAD ligation resulted in loss of heart function as confirmed by echocardiography performed after 2 and 6 weeks. Goldner trichrome staining performed on heart sections confirmed transmural scar formation. First and second surgeries resulted in less that 10% post-operative mortality. 


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/terapia , Pericárdio/cirurgia , Toracotomia/métodos , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Feminino , Ligadura , Masculino , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/cirurgia , Pericárdio/citologia , Ratos , Ratos Endogâmicos Lew
18.
Methods Mol Biol ; 1121: 223-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24510826

RESUMO

Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. Here, we describe two protocols involving in vivo electroporation for gene transfer to the beating heart.


Assuntos
Eletroporação/métodos , Técnicas de Transferência de Genes , Coração/fisiologia , Miocárdio/metabolismo , Anestesia , Animais , Procedimentos Cirúrgicos Cardíacos , Masculino , Ratos
19.
J Heart Lung Transplant ; 33(2): 203-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24315785

RESUMO

BACKGROUND: Mechanical unloading of failing hearts can trigger functional recovery but results in progressive atrophy and possibly detrimental adaptation. In an unbiased approach, we examined the dynamic effects of unloading duration on molecular markers indicative of myocardial damage, hypothesizing that potential recovery may be improved by optimized unloading time. METHODS: Heterotopically transplanted normal rat hearts were harvested at 3, 8, 15, 30, and 60 days. Forty-seven genes were analyzed using TaqMan-based microarray, Western blot, and immunohistochemistry. RESULTS: In parallel with marked atrophy (22% to 64% volume loss at 3 respectively 60 days), expression of myosin heavy-chain isoforms (MHC-α/-ß) was characteristically switched in a time-dependent manner. Genes involved in tissue remodeling (FGF-2, CTGF, TGFb, IGF-1) were increasingly upregulated with duration of unloading. A distinct pattern was observed for genes involved in generation of contractile force; an indiscriminate early downregulation was followed by a new steady-state below normal. For pro-apoptotic transcripts bax, bnip-3, and cCasp-6 and -9 mRNA levels demonstrated a slight increase up to 30 days unloading with pronunciation at 60 days. Findings regarding cell death were confirmed on the protein level. Proteasome activity indicated early increase of protein degradation but decreased below baseline in unloaded hearts at 60 days. CONCLUSIONS: We identified incrementally increased apoptosis after myocardial unloading of the normal rat heart, which is exacerbated at late time points (60 days) and inversely related to loss of myocardial mass. Our findings suggest an irreversible detrimental effect of long-term unloading on myocardium that may be precluded by partial reloading and amenable to molecular therapeutic intervention.


Assuntos
Apoptose/fisiologia , Transplante de Coração , Coração/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Remodelação Ventricular/fisiologia , Animais , Biomarcadores/metabolismo , Caspase 6/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Modelos Animais , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Endogâmicos Lew , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo , Proteína X Associada a bcl-2/metabolismo
20.
Methods Mol Biol ; 1058: 119-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23700279

RESUMO

As opposed to culture on standard tissue-treated plastic, cell culture on three-dimensional scaffolds impedes additional challenges with respect to substrate preparation, cell seeding, culture maintenance, and analysis. We herewith present a general route for the culture of primary cells, differentiated cells, or stem cells on plasma-coated, electrospun scaffolds. We describe a method to prepare and fix the scaffolds in culture wells and discuss a convenient method for cell seeding and subsequent analysis by scanning electron microscopy or immunohistology.


Assuntos
Técnicas de Cultura de Células/métodos , Plasma , Alicerces Teciduais , Animais , Camundongos , Nanofibras/química , Nanofibras/ultraestrutura , Plasma/química , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...