Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(12): 34553-34572, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36515885

RESUMO

A pioneering study on phytoplankton marker pigments, by adopting the HPLC-CHEMTAX analytical approach, was carried out in one of the major shellfish harvesting estuaries (Ashtamudi estuary-AE) on the southwest coast of India and also its adjacent nearshore waters (< 20 m depth) to study the dynamics of phytoplankton functional groups (PFGs). The AE, in general, appeared to be warm (> 29 °C) during the non-monsoon seasons, along with the prevalence of higher salinity (> 25) and NH4-N (> 5 µM) levels. However, during the summer monsoon (SM), the prevailing substantial river influx converted the AE into a low salinity (< 10) dominated system, provided with enhanced levels of NO3-N (4.6-12.6 µM) and PO4-P (0.2-1.4 µM), specifically on its upper reaches. The dissolved inorganic nitrogen (DIN) in the AE was mainly comprised of ammonium (NH4-N), approximately up to ~ 81.8% of the DIN, regardless of seasons, which signifies the eutrophic state of the estuary, the upstream sampling locations, in particular. Concerning the phytoplankton community, a pronounced spatio-temporal variation in chlorophyll a biomass was discernible in the AE, with an exceptional increase (6.4-12.1 mg m-3) during the SIM period. The prevalence of a conspicuous increase in chlorophyll a (av. > 5 mg m-3) along with enhanced zeaxanthin (av. > 1.5 mg m-3) recorded in the AE during the non-monsoon (specifically SIM period) season apparently signified the characteristic governance of cyanobacterial community. During the SM period, the estuary sustained more or less similar concentrations of certain marker pigments, i.e. alloxanthin, zeaxanthin, fucoxanthin and chl b, which representing the co-occurrence of cryptophytes, cyanobacteria, diatoms and chlorophytes, respectively. In contrast, the nearshore waters, wherein enhanced nitrate (NO3-N) and phosphate (PO4-P) levels prevailed, irrespective of seasons, sustained dominance of fucoxanthin over other marker pigments, which indicated the numerical supremacy of diatoms. The CHEMTAX analysis, adopted for estimating the chlorophyll a equivalents of various PFGs, corroborated the supremacy of cyanobacterial derived chlorophyll a in the estuary, and it was conspicuous during the non-monsoonal seasonal periods. Even though the estuary has shown remarkable spatio-temporal hydrographic inconsistencies, that variability was not much operative in generating extreme changes in the nutrient components and subsequent phytoplankton community compositions. From the conspicuous increase in N:P and Si:P ratios, resulting mainly from the low levels of P, it can be concluded that the AE has been a P-limited system for phytoplankton growth (especially for large-sized phytoplankton, e.g. diatoms and dinoflagellates), mainly during the non-monsoonal seasonal periods. Perhaps, this P-limitation, along with the prevalence of warm water column and enhanced NH4-N levels, could be the potential causes of the preponderance of cyanobacterial populations in the AE.


Assuntos
Cianobactérias , Diatomáceas , Fitoplâncton , Clorofila A/análise , Estuários , Zeaxantinas/análise , Água do Mar , Estações do Ano , Frutos do Mar/análise , Índia , Monitoramento Ambiental/métodos , Clorofila/análise
2.
Environ Sci Pollut Res Int ; 30(2): 2771-2786, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35934740

RESUMO

Cochin estuary (CE) is one of the largest tropical estuaries along the southwest coast of India, sustaining rich bio-resources. Several studies enlighten the environmental changes in the CE caused by anthropogenic activities. In the present study, an attempt has been made to quantify the heavy metal (dissolved and particulate) fluxes brought by the six rivers into the CE with their exchange into the coastal ocean through the major inlet at Cochin during a steady flow period (October-November 2015). The water flux across the inlet was quantified using an acoustic doppler current profiler. The measured daily input of dissolved metals from the rivers was 2.43 × 103 kg Fe, 334 kg Zn, 259 kg Ni, and 83 kg Cr, while that of particulate metals were 85.30 × 103 kg Fe, 8. 6 × 103 kg Mn, 236.9 kg Cr, and 111.9 kg Zn. The net export of metals through the Cochin inlet (per tidal cycle) was 3.3 × 103 kg Fe, 515 kg Cr, 150 kg Zn, and 5 kg Ni in dissolved form and 3.32 × 105 kg Fe, 1747 kg Mn, 1636 kg Cr, 1397 kg Zn, and 586 kg Ni in particulate form. The high concentrations of metals during ebb tides are clear indications of their contribution from the industrial conglomerates (industrial units of metallurgy, catalyst, fertilizer, and pesticides) located in the Periyar River. The significance of this study is that the export fluxes may increase further during the summer monsoon (June to September), which may impact the abundant fishery emanating in the coastal environment during the period due to intense upwelling.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Estuários , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Metais Pesados/análise , Rios , Índia , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...