Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401719, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995511

RESUMO

Monocarboxylate transporter 8 (MCT8) is a trans-membrane transporter, which mediates the cellular delivery of thyroid hormones, L-thyroxine (T4) and 3,5,3 '-triiodo-L-thyronine (T3). In humans, the MCT8 protein is encoded by the SLC16A2 gene and mutations in the transporter cause a genetic neurological disorder known as Allan-Herndon-Dudley syndrome (AHDS). MCT8 deficiency leads to impaired transport of thyroid hormones in the brain. Radiolabelled T4 and T3 or LC/MS-MS methods have been used to monitor the thyroid hormone uptake through MCT8. Herein, we developed a fluorescent based assay to monitor the thyroid hormone uptake through MCT8. A dansyl-based fluorescent probe having L-thyroxine moiety is found to be highly selective towards MCT8 in living cells. The high selectivity of the probe towards MCT8 can be attributed to the halogen bond-mediated recognition by the transporter protein. The presence of a free carboxylic acid group is essential for the specificity of the probe towards MCT8. Additionally, the selectivity of the probe for MCT8 is abolished upon esterification of the carboxylic group. Similarly, MCT8 does not recognize the probe when it contains a free amine group.

2.
Chemistry ; 29(9): e202203111, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36380701

RESUMO

The regioselective deiodinations of L-thyroxine (T4) play key roles in the thyroid hormone homeostasis. These reactions are catalyzed by three isoforms of the selenoenzymes, iodothyronine deiodinases (Dio1, Dio2 and Dio3), which are highly homologous in nature. Dio1 mediates 5'- or 5-deiodinations of T4 to produce T3 and rT3, respectively. In contrast, Dio2 and Dio3 are selective to 5'- or 5-deiodination to produce T3 and rT3, respectively. Understanding of the regioselectivity of deiodination at the molecular level is important as abnormal levels of thyroid hormone have been implicated in various clinical conditions, such as hypoxia, myocardial infarction, neuronal ischemia and cancer. In this paper, we report that the electronic properties of the iodine atoms in thyroxine (T4) can be modulated through a simple substitution in the 4'-phenolic moiety. This leads to the change in the regioselectivity of deiodination by different small molecule mimics of Dio enzymes. By using this chemical approach, we also show that the substitution of a strong electron withdrawing group facilitates the removal of all four iodine atoms in the T4 derivative. Theoretical investigations on the hydrogen bonded adducts of T4 with imidazole indicate that the charge on the iodine atoms depend on the nature of hydrogen bond between the -OH group of T4 and the imidazole moiety. While the imidazole can act as either hydrogen bond acceptor (HBA) or hydrogen bond donor (HBD), the protonated imidazole acts exclusively as HBD in T4-imidazole complex. These studies support the earlier observations that the histidine residue at the active sites of the deiodinases play an important role not only in the substrate binding, but also in altering the regioselectivity of the deiodination reactions.


Assuntos
Iodeto Peroxidase , Iodo , Iodeto Peroxidase/metabolismo , Hormônios Tireóideos/química , Tiroxina/química , Tiroxina/metabolismo , Imidazóis , Tri-Iodotironina/química , Tri-Iodotironina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...