Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 19(10): 7138-7143, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31465232

RESUMO

We propose the "Andreev molecule," an artificial quantum system composed of two closely spaced Josephson junctions. The coupling between Josephson junctions in an Andreev molecule occurs through the overlap and hybridization of the junction's "atomic" orbitals, Andreev Bound States. A striking consequence is that the supercurrent flowing through one junction depends on the superconducting phase difference across the other junction. Using the Bogolubiov-de-Gennes formalism, we derive the energy spectrum and nonlocal current-phase relation for arbitrary separation. We demonstrate the possibility of creating a φ-junction and propose experiments to verify our predictions. Andreev molecules may have potential applications in quantum information, metrology, sensing, and molecular simulation.

2.
Science ; 349(6253): 1199-202, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26359397

RESUMO

Coherent control of quantum states has been demonstrated in a variety of superconducting devices. In all of these devices, the variables that are manipulated are collective electromagnetic degrees of freedom: charge, superconducting phase, or flux. Here we demonstrate the coherent manipulation of a quantum system based on Andreev bound states, which are microscopic quasi-particle states inherent to superconducting weak links. Using a circuit quantum electrodynamics setup, we performed single-shot readout of this Andreev qubit. We determined its excited-state lifetime and coherence time to be in the microsecond range. Quantum jumps and parity switchings were observed in continuous measurements. In addition to having possible quantum information applications, such Andreev qubits are a test-bed for the physics of single elementary excitations in superconductors.

3.
J Phys Condens Matter ; 26(47): 474208, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25351409

RESUMO

We describe and characterize a microwave setup to probe the Andreev levels of a superconducting atomic contact. The contact is part of a superconducting loop inductively coupled to a superconducting coplanar resonator. By monitoring the resonator reflection coefficient close to its resonance frequency as a function of both flux through the loop and frequency of a second tone we perform spectroscopy of the transition between two Andreev levels of highly transmitting channels of the contact. The results indicate how to perform coherent manipulation of these states.

4.
Nature ; 499(7458): 312-5, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23868261

RESUMO

The Josephson effect describes the flow of supercurrent in a weak link-such as a tunnel junction, nanowire or molecule-between two superconductors. It is the basis for a variety of circuits and devices, with applications ranging from medicine to quantum information. Experiments using Josephson circuits that behave like artificial atoms are now revolutionizing the way we probe and exploit the laws of quantum physics. Microscopically, the supercurrent is carried by Andreev pair states, which are localized at the weak link. These states come in doublets and have energies inside the superconducting gap. Existing Josephson circuits are based on properties of just the ground state of each doublet, and so far the excited states have not been directly detected. Here we establish their existence through spectroscopic measurements of superconducting atomic contacts. The spectra, which depend on the atomic configuration and on the phase difference between the superconductors, are in complete agreement with theory. Andreev doublets could be exploited to encode information in novel types of superconducting qubits.

5.
Phys Rev Lett ; 104(4): 047001, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20366731

RESUMO

We have produced graphene sheets decorated with a nonpercolating network of nanoscale tin clusters. These metal clusters both efficiently dope the graphene substrate and induce long-range superconducting correlations. We find that despite structural inhomogeneity on mesoscopic length scales (10-100 nm), this material behaves electronically as a homogenous dirty superconductor with a field-effect tuned Berezinskii-Kosterlitz-Thouless transition. Our facile self-assembly method establishes graphene as an ideal tunable substrate for studying induced two-dimensional electronic systems at fixed disorder and our technique can readily be extended to other order parameters such as magnetism.

6.
Phys Rev Lett ; 101(6): 066806, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18764491

RESUMO

We report the near-edge x-ray absorption fine-structure (NEXAFS) spectrum of a single layer of graphite (graphene) obtained by micromechanical cleavage of highly ordered pyrolytic graphite on a SiO2 substrate. We utilized a photoemission electron microscope to separately study single-, double-, and few-layers graphene samples. In single-layer graphene we observe a splitting of the pi resonance and a clear signature of the predicted interlayer state. The NEXAFS data illustrate the rapid evolution of the electronic structure with the increased number of layers.

7.
Nature ; 454(7202): 319-22, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18633414

RESUMO

Observing the individual building blocks of matter is one of the primary goals of microscopy. The invention of the scanning tunnelling microscope revolutionized experimental surface science in that atomic-scale features on a solid-state surface could finally be readily imaged. However, scanning tunnelling microscopy has limited applicability due to restrictions in, for example, sample conductivity, cleanliness, and data acquisition rate. An older microscopy technique, that of transmission electron microscopy (TEM), has benefited tremendously in recent years from subtle instrumentation advances, and individual heavy (high-atomic-number) atoms can now be detected by TEM even when embedded within a semiconductor material. But detecting an individual low-atomic-number atom, for example carbon or even hydrogen, is still extremely challenging, if not impossible, via conventional TEM owing to the very low contrast of light elements. Here we demonstrate a means to observe, by conventional TEM, even the smallest atoms and molecules: on a clean single-layer graphene membrane, adsorbates such as atomic hydrogen and carbon can be seen as if they were suspended in free space. We directly image such individual adatoms, along with carbon chains and vacancies, and investigate their dynamics in real time. These techniques open a way to reveal dynamics of more complex chemical reactions or identify the atomic-scale structure of unknown adsorbates. In addition, the study of atomic-scale defects in graphene may provide insights for nanoelectronic applications of this interesting material.

8.
Phys Rev Lett ; 96(21): 215503, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16803247

RESUMO

We have created a tunable mechanical nanoscale resonator with potential applications in precise mass, force, position, and frequency measurement. The device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezo-controlled contact. By exploiting the unique telescoping ability of MWNTs, we controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and tuning its flexural resonance frequency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...