Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(11): 113501, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501351

RESUMO

The experimental method developed at ASDEX Upgrade for the determination of the intrinsic tungsten (W) density profile coupling data from the soft X-ray (SXR) diagnostic and vacuum-ultra-violet (VUV) spectroscopy has been upgraded for application to JET plasmas. The strong poloidal asymmetries in the SXR emission are modeled assuming a ln ( ϵ ( ρ , R ) / ϵ ( ρ , R 0 ) ) = λ ( ρ ) ( R 2 - R 0 2 ) distribution, where ρ is the flux coordinate, R is the major radius, and λ is the fit parameter. The W density is calculated from the resulting 2D SXR emissivity maps accounting for contributions from a low-Z impurity (typically beryllium) and main ion with the assumption that their contributions are poloidally symmetric. Comparing the result with the independent W concentration measurement of VUV spectroscopy, a recalibration factor for the SXR emissivity is calculated making the method robust against the decrease in the sensitivity of the SXR diodes which has been observed across multiple campaigns. The final 2D W density map is checked for consistency versus the time-evolution of the W concentration measurement from VUV spectroscopy, toroidal rotation measurements from charge exchange recombination spectroscopy, and tomographic reconstructions of bolometry data. The method has been found to be robust for W concentrations above a few 10-5 and in cases where the contributions from other medium-Z impurities such as Ni are negligible.

2.
Rev Sci Instrum ; 79(10): 10F525, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19068535

RESUMO

The core charge-exchange diagnostic at the Joint European Torus (JET) provides measurements of the impurity ion temperature T(i), toroidal velocity V(phi), and impurity ion densities n(imp), across the whole minor radius. A contribution to the uncertainty of the measured quantities is the error resulting from the multi-Gaussian fit and photon statistics, usually quoted for each measured data. Absolute intensity calibration and especially alignment of the viewing directions can introduce an important systematic error. The technique adopted at JET to reduce this systematic contribution to the error is presented in this paper. The error in T(i), V(phi), and n(imp) is then discussed depending on their use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...