Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 130(2): 612-624, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31671073

RESUMO

EGFR-mutated lung adenocarcinoma patients treated with gefitinib and osimertinib show a therapeutic benefit limited by the appearance of secondary mutations, such as EGFRT790M and EGFRC797S. It is generally assumed that these secondary mutations render EGFR completely unresponsive to the inhibitors, but contrary to this, we uncovered here that gefitinib and osimertinib increased STAT3 phosphorylation (p-STAT3) in EGFRT790M and EGFRC797S tumoral cells. Interestingly, we also found that concomitant Notch inhibition with gefitinib or osimertinib treatment induced a p-STAT3-dependent strong reduction in the levels of the transcriptional repressor HES1. Importantly, we showed that tyrosine kinase inhibitor-resistant tumors, with EGFRT790M and EGFRC797S mutations, were highly responsive to the combined treatment of Notch inhibitors with gefitinib or osimertinib, respectively. Finally, in patients with EGFR mutations treated with tyrosine kinase inhibitors, HES1 protein levels increased during relapse and correlated with shorter progression-free survival. Therefore, our results offer a proof of concept for an alternative treatment to chemotherapy in lung adenocarcinoma osimertinib-treated patients after disease progression.


Assuntos
Acrilamidas/farmacologia , Adenocarcinoma de Pulmão , Compostos de Anilina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB , Gefitinibe/farmacologia , Neoplasias Pulmonares , Mutação de Sentido Incorreto , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Substituição de Aminoácidos , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1091-101, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27033119

RESUMO

Periodontitis and type 2 diabetes are connected pandemic diseases, and both are risk factors for cardiovascular complications. Nevertheless, the molecular factors relating these two chronic pathologies are poorly understood. We have shown that, in response to a long-term fat-enriched diet, mice present particular gut microbiota profiles related to three metabolic phenotypes: diabetic-resistant (DR), intermediate (Inter), and diabetic-sensitive (DS). Moreover, many studies suggest that a dysbiosis of periodontal microbiota could be associated with the incidence of metabolic and cardiac diseases. We investigated whether periodontitis together with the periodontal microbiota may also be associated with these different cardiometabolic phenotypes. We report that the severity of glucose intolerance is related to the severity of periodontitis and cardiac disorders. In detail, alveolar bone loss was more accentuated in DS than Inter, DR, and normal chow-fed mice. Molecular markers of periodontal inflammation, such as TNF-α and plasminogen activator inhibitor-1 mRNA levels, correlated positively with both alveolar bone loss and glycemic index. Furthermore, the periodontal microbiota of DR mice was dominated by the Streptococcaceae family of the phylum Firmicutes, whereas the periodontal microbiota of DS mice was characterized by increased Porphyromonadaceae and Prevotellaceae families. Moreover, in DS mice the periodontal microbiota was indicated by an abundance of the genera Prevotella and Tannerella, which are major periodontal pathogens. PICRUSt analysis of the periodontal microbiome highlighted that prenyltransferase pathways follow the cardiometabolic adaptation to a high-fat diet. Finally, DS mice displayed a worse cardiac phenotype, percentage of fractional shortening, heart rhythm, and left ventricle weight-to-tibia length ratio than Inter and DR mice. Together, our data show that periodontitis combined with particular periodontal microbiota and microbiome is associated with metabolic adaptation to a high-fat diet related to the severity of cardiometabolic alteration.


Assuntos
Adaptação Fisiológica , Doenças Cardiovasculares/metabolismo , Dieta Hiperlipídica , Intolerância à Glucose , Microbiota , Periodontite/microbiologia , Função Ventricular , Animais , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/microbiologia , Dimetilaliltranstransferase/metabolismo , Disbiose/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Periodontite/complicações , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Prevotella/isolamento & purificação , Streptococcaceae/isolamento & purificação , Fator de Necrose Tumoral alfa/metabolismo
3.
Cell Metab ; 22(1): 100-12, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26154056

RESUMO

A high-fat diet (HFD) induces metabolic disease and low-grade metabolic inflammation in response to changes in the intestinal microbiota through as-yet-unknown mechanisms. Here, we show that a HFD-derived ileum microbiota is responsible for a decrease in Th17 cells of the lamina propria in axenic colonized mice. The HFD also changed the expression profiles of intestinal antigen-presenting cells and their ability to generate Th17 cells in vitro. Consistent with these data, the metabolic phenotype was mimicked in RORγt-deficient mice, which lack IL17 and IL22 function, and in the adoptive transfer experiment of T cells from RORγt-deficient mice into Rag1-deficient mice. We conclude that the microbiota of the ileum regulates Th17 cell homeostasis in the small intestine and determines the outcome of metabolic disease.


Assuntos
Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/microbiologia , Diabetes Mellitus Tipo 2/microbiologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Obesidade/microbiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Deleção de Genes , Regulação da Expressão Gênica , Íleo/imunologia , Íleo/metabolismo , Íleo/microbiologia , Imunidade , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Obesidade/etiologia , Obesidade/genética , Obesidade/imunologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...