Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 154: 608-625, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36341887

RESUMO

Osteomyelitis is a hard-to-treat infection of the bone and bone marrow that is mainly caused by Staphylococcus aureus, with an increasing incidence of methicillin-resistant S. aureus (MRSA). Owing to the aggressiveness of these bacteria in colonizing and destroying the bone, systemic antibiotic treatments fail to eradicate the infection. Instead, it normally entails surgery to remove the dead or infected bone. In this work, we report bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis. The nanoparticles have been engineered with a functional gelatine/colistin coating able to hamper premature release from the mesopores while effectively disaggregating the bacterial biofilm. Because antibiotic resistance is a global emergency, we have designed two sets of identical nanoparticles, carrying each of them a clinically relevant antibiotic, that have demonstrated to have synergistic effect. The bone-targeted nanoparticles have been thoroughly evaluated in vitro and in vivo, obtaining a notable reduction of the amount of bacteria in the bone in just 24 h after only one dose, and paving the way for localized, nanoparticle-mediated treatment of MRSA-caused osteomyelitis. STATEMENT OF SIGNIFICANCE: In this work, we propose the use of bone-targeted mesoporous silica nanoparticles to address S. aureus-caused osteomyelitis that render synergistic therapeutic effect via multidrug delivery. Because the bacterial biofilm is responsible for an aggressive surgical approach and prolonged antibiotic treatment, the nanoparticles have been functionalized with a functional coating able to both disaggregate the biofilm, hamper premature antibiotic release and protect the intact bone. These engineered nanoparticles are able to effectively target bone tissue both in vitro and in vivo, showing high biocompatibility and elevated antibacterial effect.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus , Dióxido de Silício/farmacologia , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Osso e Ossos , Testes de Sensibilidade Microbiana
2.
Acta Biomater ; 137: 218-237, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653694

RESUMO

Osteomyelitis is an inflammatory process of bone and bone marrow that may even lead to patient death. Even though this disease is mainly caused by Gram-positive organisms, the proportion of bone infections caused by Gram-negative bacteria, such as Escherichia coli, has significantly increased in recent years. In this work, mesoporous silica nanoparticles have been employed as platform to engineer a nanomedicine able to eradicate E. coli- related bone infections. For that purpose, the nanoparticles have been loaded with moxifloxacin and further functionalized with Arabic gum and colistin (AG+CO-coated MX-loaded MSNs). The nanosystem demonstrated high affinity toward E. coli biofilm matrix, thanks to AG coating, and marked antibacterial effect because of the bactericidal effect of moxifloxacin and the disaggregating effect of colistin. AG+CO-coated MX-loaded MSNs were able to eradicate the infection developed on a trabecular bone in vitro and showed pronounced antibacterial efficacy in vivo against an osteomyelitis provoked by E. coli. Furthermore, AG+CO-coated MX-loaded MSNs were shown to be essentially non-cytotoxic with only slight effect on cell proliferation and mild hepatotoxicity, which might be attributed to the nature of both antibiotics. In view of these results, these nanoparticles may be considered as a promising treatment for bone infections caused by enterobacteria, such as E. coli, and introduce a general strategy against bone infections based on the implementation of antibiotics with different but complementary activity into a single nanocarrier. STATEMENT OF SIGNIFICANCE: In this work, we propose a methodology to address E.coli bone infections by using moxifloxacin-loaded mesoporous silica nanoparticles coated with Arabic gum containing colistin (AG+CO-coated MX-loaded MSNs). The in vitro evaluation of this nanosystem demonstrated high affinity toward E. coli biofilm matrix thanks to the Arabic gum coating, a disaggregating and antibacterial effect of colistin, and a remarkable antibiofilm action because of the bactericidal ability of moxifloxacin and colistin. This anti-E. coli capacity of AG+CO-coated MX-loaded MSNs was brought out in an in vivo rabbit model of osteomyelitis where the nanosystem was able to eradicate more than 90% of the bacterial load within the infected bone.


Assuntos
Nanopartículas , Osteomielite , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Escherichia coli , Moxifloxacina/farmacologia , Osteomielite/tratamento farmacológico , Coelhos , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...