Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1267395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886076

RESUMO

Disease outbreaks of bacterial leaf spot and blight of pepper and tomato often occur in both transplant- and field-production systems worldwide. In some cases, the outbreaks are caused by novel bacterial species. Characterization of these novel bacterial species are critical in developing diagnostic assays and identifying management options for pathogen monitoring and sustainable production, respectively. We characterized strains belonging to novel Pseudomonas species that are responsible for outbreaks in pepper and tomato both in transplant-houses and in production fields in Georgia, USA. Phylogenomic analyses and whole genome sequence indices demonstrated that the pepper and tomato strains belonged to P. capsici. The whole-genome comparison revealed that 13 Pseudomonas strains from diverse isolation sources that were curated in NCBI were indeed P. capsici indicating a potential wide-host range for this bacterial species. Our greenhouse-based host-range assay also indicated that P. capsici strains were pathogenic on pepper, tomato, eggplant, cabbage, lettuce, and watermelon corroborating a wide-host-range. A phylogenetic tree inferred from the whole genome sequence data showed that the P. capsici strains from Georgia (pepper and tomato) were genetically diverse, and were closely related to tomato P. capsici strains from Florida. Genomic presence of traditional bacterial virulence factors in P. capsici strains was also determined. Pseudomonascapsici strains encode one set of type I secretion system, two sets of type II secretion systems, one set of type III secretion system, two sets of type V secretion systems, three sets of type VI secretion systems, and various secondary metabolite gene clusters including lipopeptides. In in-vitro assays, it was demonstrated that six out of seven P. capsici strains (pepper and tomato strains from Georgia) were not sensitive to 0.8 mM CuSO4. When the genomes of copper-tolerant strains were compared with the copper-sensitive strains, it was observed that the former strains encode a cluster of genes related to copper tolerance, which were absent in the genomes of copper-sensitive strains. Considering the ability of P. capsici strains to infect a range of vegetable hosts and possession of a wide range of bacterial virulence factors, secondary metabolites, and copper-tolerance genes, we envision that the management of this pathogen might potentially be a challenge.

2.
Plant Dis ; 107(9): 2701-2708, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36774574

RESUMO

Center rot of onion is caused by a complex of plant pathogenic Pantoea species, which can lead to significant yield losses in the field and during storage. Conventional growers use foliar protectants such as a mixture of copper bactericides and an ethylene-bis-dithiocarbamate (EBDC) fungicide to manage the disease; however, organic growers have limited management options besides copper-protectants. Biocontrol agents (BCAs) provide an alternative; however, their efficacy could be compromised due in part to their inability to colonize the foliage. We hypothesized that pretreatment with peroxide (OxiDate 2.0: a.i., hydrogen peroxide and peroxyacetic acid) enhances the colonizing ability of the subsequently applied BCAs, leading to effective center rot management. Field trials were conducted in 2020 and 2021 to assess the efficacy of peroxide, BCAs (Serenade ASO: Bacillus subtilis and BlightBan: Pseudomonas fluorescens), and an insecticide program (tank mix of spinosad and neem oil) to manage center rot. We observed no significant difference in foliar area under the disease progress curve (AUDPC) between the peroxide pretreated P. fluorescens plots and only P. fluorescens-treated plots in 2020 and 2021. Peroxide pretreatment before B. subtilis application significantly reduced the foliar AUDPC as compared with the stand-alone B. subtilis treatment in 2020; however, no such difference was observed in 2021. Similarly, peroxide pretreatment before either of the BCAs did not seem to reduce the incidence of bulb rot as compared with the stand-alone BCA treatment in any of the trials (2020 and 2021). Additionally, our foliar microbiome study showed comparatively higher P. fluorescens retention on peroxide pretreated onion foliage; however, at the end of the growing season, P. fluorescens was drastically reduced and was virtually nonexistent (<0.002% of the total reads). Overall, the pretreatment with peroxide had a limited effect in improving the foliar colonizing ability of BCAs and consequently a limited effect in managing center rot.


Assuntos
Fungicidas Industriais , Pantoea , Cobre , Doenças das Plantas/prevenção & controle , Peróxidos
3.
Mol Plant Microbe Interact ; 36(3): 176-188, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534063

RESUMO

Onion center rot is caused by at least four species of genus Pantoea (P. ananatis, P. agglomerans, P. allii, and P. stewartii subsp. indologenes). Critical onion pathogenicity determinants for P. ananatis were recently described, but whether those determinants are common among other onion-pathogenic Pantoea species remains unknown. In this work, we report onion pathogenicity determinants in P. stewartii subsp. indologenes and P. allii. We identified two distinct secondary metabolite biosynthetic gene clusters present separately in different strains of onion-pathogenic P. stewartii subsp. indologenes. One cluster is similar to the previously described HiVir phosphonate biosynthetic cluster identified in P. ananatis and another is a novel putative phosphonate biosynthetic gene cluster, which we named Halophos. The Halophos gene cluster was also identified in P. allii strains. Both clusters are predicted to be phosphonate biosynthetic clusters based on the presence of a characteristic phosphoenolpyruvate phosphomutase (pepM) gene. The deletion of the pepM gene from either HiVir or Halophos clusters in P. stewartii subsp. indologenes caused loss of necrosis on onion leaves and red onion scales and resulted in significantly lower bacterial populations compared with the corresponding wild-type and complemented strains. Seven (halB to halH) of 11 genes (halA to halK) in the Halophos gene cluster are required for onion necrosis phenotypes. The onion nonpathogenic strain PNA15-2 (P. stewartii subsp. indologenes) gained the capacity to cause foliar necrosis on onion via exogenous expression of a minimal seven-gene Halophos cluster (genes halB to halH). Furthermore, cell-free culture filtrates of PNA14-12 expressing the intact Halophos gene cluster caused necrosis on onion leaves consistent with the presence of a secreted toxin. Based on the similarity of proteins to those with experimentally determined functions, we are able to predict most of the steps in Halophos biosynthesis. Together, these observations indicate that production of the toxin phosphonate seems sufficient to account for virulence of a variety of different Pantoea strains, although strains differ in possessing a single but distinct phosphonate biosynthetic cluster. Overall, this is the first report of onion pathogenicity determinants in P. stewartii subsp. indologenes and P. allii. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Organofosfonatos , Pantoea , Pantoea/genética , Cebolas/microbiologia , Virulência/genética , Doenças das Plantas/microbiologia , Família Multigênica
4.
Front Microbiol ; 13: 1054813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532473

RESUMO

Onion bulb rot can be caused by multiple plant pathogens including bacterial pathogens. During our routine survey of commercial onion farms in 2014, 2020, and 2021, seven putative Rouxiella spp. strains were isolated from symptomatic onion samples in Georgia, United States. Upon fulfilling Koch's postulates on onion, a genome analysis was conducted. Whole-genome indices (ANI and dDDH) showed that the strains belonged to Rouxiella badensis. Although the seven R. badensis strains were not pathogenic on onion foliage, the strains were able to cause bulb rot and could also produce necrotic lesions in a red onion scale assay. R. badensis populations increased significantly and to a level comparable to P. ananatis PNA 97-1R in a red onion scale infection assay. The core-genome analysis grouped all onion R. badensis strains from Georgia together, and distinct from R. badensis strains isolated from other sources and locations. Based on the genome analysis of strains (from the current study and available genomes in the repository), type I, III (Ssa-Esc and Inv-Mxi-Spa types), and V secretion systems are present in R. badensis genomes, while type II, IV, and VI secretion systems are absent. However, various secondary metabolite gene clusters were identified from R. badensis genomes, and a thiol/redox-associated enzyme gene cluster similar to the Pantoea alt cluster mediating thiosulfinate tolerance was also present in onion strains of R. badensis. This is the first report of R. badensis as a plant pathogen.

5.
Pathogens ; 11(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36297194

RESUMO

The soil-borne pathogens, particularly Fusarium oxysporum f. sp. niveum (FON) and southern root-knot nematode (RKN, Meloidogyne incognita) are the major threats to watermelon production in the southeastern United States. The role of soil micronutrients on induced resistance (IR) to plant diseases is well-documented in soil-based media. However, soil-based media do not allow us to determine the contribution of individual micronutrients in the induction of IR. In this manuscript, we utilized hydroponics-medium to assess the effect of controlled application of micronutrients, including iron (Fe), manganese (Mn), and zinc (Zn) on the expression of important IR genes (PR1, PR5, and NPR1 from salicylic acid (SA) pathway, and VSP, PDF, and LOX genes from jasmonic acid (JA) pathway) in watermelon seedlings upon inoculation with either FON or RKN or both. A subset of micronutrient-treated plants was inoculated (on the eighth day of micronutrient application) with FON and RKN (single or mixed inoculation). The expression of the IR genes in treated and control samples was evaluated using qRT-PCR. Although, significant phenotypic differences were not observed with respect to the severity of wilt symptoms or RKN galling with any of the micronutrient treatments within the 30-day experimental period, differences in the induction of IR genes were considerably noticeable. However, the level of gene expression varied with sampling period, type and concentration of micronutrients applied, and pathogen inoculation. In the absence of pathogens, micronutrient applications on the seventh day, in general, downregulated the expression of the majority of the IR genes. However, pathogen inoculation preferentially either up- or down-regulated the expression levels of the IR genes at three days post-inoculation depending on the type and concentration of micronutrients. The results demonstrated here indicate that micronutrients in watermelon may potentially make watermelon plants susceptible to infection by FON and RKN. However, upon infection the IR genes are significantly up-regulated that they may potentially aid the prevention of further infection via SA- and JA-pathways. This is the first demonstration of the impact of micronutrients affecting IR in watermelon against FON and RKN infection.

6.
Syst Appl Microbiol ; 45(1): 126278, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800898

RESUMO

This study provides a taxonomic characterization of three bacterial strains isolated from onion seedlings in Georgia USA. Yellow-colored colonies were isolated, and a diffusible fluorescent pigment was visible under ultraviolet light on King's medium B. Preliminary analysis of the basic phenotype tests and 16S rRNA gene sequence analysis indicated the onion strains were closely related to Pseudomonas viridiflava with the highest similarity to P. viridiflava DSM 6694T (99.6%). The phylogenomic analyses based on whole genome sequences showed that the onion strains formed a separate monophyletic clade from other species with P. viridiflava as the closest neighbor. When the onion strains and the P. viridiflava type strain were compared, the average nucleotide identity values was 91.6%. Additionally, the digital DNA-DNA hybridization values of the onion strains were 45.8% or less when compared to the type strains of their close relatives, including P. viridiflava. In addition, biochemical, physiological features, and cellular fatty acid compositions were determined for a polyphasic taxonomic analysis. The results supported that the three onion strains represented a novel Pseudomonas species. We propose a new species as Pseudomonas alliivorans sp. nov., with 20GA0068T (=LMG 32210T = CFBP 8885T) as the type strain. The DNA G + C content of the strain 20GA0068T is 59.1 mol%.


Assuntos
Cebolas , Pseudomonas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Georgia , Hibridização de Ácido Nucleico , Filogenia , Pseudomonas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Phytopathology ; 111(9): 1509-1519, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33599528

RESUMO

Pantoea stewartii subsp. indologenes is a causative agent of leafspot of foxtail millet and pearl millet; however, novel strains were recently identified that are pathogenic on onion. We phenotypically and genotypically characterized 17 P. stewartii subsp. indologenes strains from onion and other sources (pearl millet, foxtail millet, guar pulse, verbena, and corn). Based on the host range evaluation, we propose two pathovars: P. stewartii subsp. indologenes pv. cepacicola pv. nov. and P. stewartii subsp. indologenes pv. setariae pv. nov. P. stewartii subsp. indologenes pv. cepacicola pv. nov. causes symptoms on Allium spp. (leek, onion, chive, and Japanese bunching onion) and on foxtail millet, pearl millet, and oat. However, P. stewartii subsp. indologenes pv. setariae pv. nov. can only infect the members of Poaceae family (foxtail millet, pearl millet, and oat). We also propose that the type strain of P. stewartii subsp. indologenes (LMG 2632T) should be designated as a pathotype strain of P. stewartii subsp. indologenes pv. setariae and recommend that the strain PNA 14-12 be designated as the pathotype strain of P. stewartii subsp. indologenes pv. cepacicola. The digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and multilocus sequence analysis study showed that the two pathovars are genotypically closely related. Our study also showed that P. stewartii subsp. indologenes pathovars and P. stewartii subsp. stewartii share high genotypic relatedness and cannot be differentiated by dDDH and ANI values. Although the newly proposed pathovars are not clearly distinguishable by their fatty acid and methyl esterase profiles and substrate use patterns, a fatty acid (unknown with retention time: 10.9525) and a few metabolites (3-methyl glucose, Na butyrate, and fusidic acid) can be potentially used to distinguish them. We also report the distribution of previously known pathogenicity (HiVir, hrcC) and virulence (alt) factors of Pantoea spp. in the new pathovars. The impact of these new pathovars in the center rot pathosystem of onion is yet to be determined.


Assuntos
Allium , Pantoea , Milhetes , Pantoea/genética , Doenças das Plantas
8.
Phytopathology ; 111(2): 258-267, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32748732

RESUMO

Center rot of onion, caused by Pantoea ananatis, is an economically important disease in onion production in Georgia and elsewhere in the United States. Growers rely on frequent foliar applications of bactericides and, in some cases, plant defense inducers to manage this disease. However, regular prophylactic application of these chemicals is not cost-effective and may not be environmentally friendly. Thrips (Thrips tabaci and Frankliniella fusca) are vectors of P. ananatis, and their feeding may compromise the effectiveness of foliar applications against P. ananatis. In this study, foliar treatments with acibenzolar-S-methyl (Actigard 50WG), cupric hydroxide (Kocide 3000), and Actigard plus Kocide were evaluated for their effectiveness in the presence and absence of thrips infestation at two critical onion growth stages: bulb initiation and bulb swelling. Onion growth stage had no impact on the effectiveness of either Kocide or Actigard. In the absence of thrips, Kocide application resulted in reduced center rot incidence compared with Actigard, regardless of the growth stage. However, when thrips were present, the efficacy of both Kocide and Actigard was reduced, with bulb incidence not significantly different from the nontreated control. In independent greenhouse studies in the presence or absence of thrips, it was observed that use of protective chemicals (Kocide, Actigard, and their combinations) at different rates also affected pathogen progression into internal neck tissue and incidence of bulb rot. These results suggest that thrips infestation can reduce the efficacy of protective chemical treatments against P. ananatis. Thrips feeding on onion foliage and resulting feeding scars could facilitate P. ananatis entry and subsequently compromise the efficacy of protective chemical treatments. Therefore, an effective center rot management strategy should likely include thrips management in addition to bactericides at susceptible growth stages of onion.


Assuntos
Pantoea , Tisanópteros , Animais , Cebolas , Doenças das Plantas/prevenção & controle
9.
Front Microbiol ; 9: 184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491851

RESUMO

Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA) and repetitive extragenic palindrome repeat (rep)-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR) A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.

10.
Plant Dis ; 102(4): 727-733, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30673400

RESUMO

Center rot of onion is an economically important disease caused by three Pantoea spp.: Pantoea ananatis, P. agglomerans, and P. allii. Symptoms caused by these three species are similar and include white streaking and necrosis of foliage; and, in some cases, the bacterium may enter the bulb, causing liquefaction and rot of bulb scales. Two bacterial strains were isolated from onion expressing symptoms indicative of center rot from two different outbreaks in Toombs County, GA in 2003 (PNA 03-3) and 2014 (PNA 14-12). These strains were initially identified as P. ananatis based on physiological and specific polymerase chain reaction (PCR) assays; however, further 16S ribosomal RNA (rRNA) and multilocus sequence analysis showed that the strains were more closely related to P. stewartii subsp. stewartii and P. stewartii subsp. indologenes. Further characterization using phylogenetic analysis, a P. stewartii subsp. indologenes-specific PCR assay, indole test, and pathogenicity on onion and pearl millet were conducted. Phylogenetic analyses (16S rRNA and atpD, gyB, infB, and rpoB genes) revealed that these strains formed a distinct cluster with the type strains of P. stewartii subsp. indologenes LMG 2632T and P. stewartii subsp. stewartii LMG 2715T separate from P. ananatis, P. agglomerans, and P. allii. Furthermore, onion strains were amplified with the P. stewartii subsp. indologenes-specific PCR assay. The pathogenicity assays with onion strains showed that they were pathogenic on onion and pearl millet, a known host of P. stewartii subsp. indologenes. However, the type strain of P. stewartii subsp. indologenes LMG 2632T was pathogenic only on pearl millet but not on onion. These results suggest that the onion strains PNA 03-3 and PNA 14-12 can potentially be novel P. stewartii subsp. indologenes strains capable of producing symptoms on onion. Hence, we recommend the inclusion of P. stewartii subsp. indologenes as the fourth member in the center rot complex of onion, along with P. ananatis, P. agglomerans, and P. allii.


Assuntos
Cebolas/microbiologia , Pantoea/fisiologia , Doenças das Plantas/microbiologia , Pantoea/genética , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
11.
Plant Dis ; 101(9): 1616-1620, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30677327

RESUMO

Center rot, caused by Pantoea ananatis, has been one of the most important bacterial diseases of onion leading to considerable economic losses. Symptoms can be expressed in the onion foliage and bulb, with the pathogen moving from the infected leaves to bulb scales. However, little is known regarding which growth stage the plant is most susceptible to bulb infection and if there are differences in susceptibility to bulb infection among sweet onion cultivars. In this study, five cultivars of sweet onion (Pirate, Sweet Harvest, 1518, Granex YPRR, and 1407) were inoculated by clipping the tips of onion foliage and depositing 1 ml of 1 × 108 CFU/ml of P. ananatis suspension into the central leaf cavity. The inoculations were done at three growth stages (first leaf senescence, bulb initiation, and bulb swelling). Center rot incidence was assessed for precured and cured onion bulbs. In addition, total bulb incidence of center rot for each cultivar inoculated at three growth stages were also calculated. Total bulb center rot incidence was significantly higher for Granex YPRR (84%) compared with other cultivars. Also, cultivars 1518 (49%) and 1407 (33%) had significantly lower incidence of bulb infection compared with other tested cultivars. Onions were significantly more susceptible to bulb infection when inoculated during first leaf senescence (62%) as compared with bulb initiation (37%) and bulb swelling (31%) stages in precured bulbs (P = 0.041). Significantly higher incidence of center rot was observed for bulbs whose foliage were inoculated during first leaf senescence stage (64%) compared with bulb initiation (55%) and bulb swelling (52%) stages (P = 0.048). Interactions between onion cultivar and inoculation stage on center rot bulb incidence were not significant (P ≥ 0.218), when evaluated at different assessment periods. However, different cultivars displayed significant variability in susceptibility to bulb infection. The outcomes of this study may have implications in devising management strategies aimed at protecting most susceptible onion growth stages against P. ananatis.


Assuntos
Cebolas , Pantoea , Cebolas/crescimento & desenvolvimento , Cebolas/microbiologia , Pantoea/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta
12.
J Econ Entomol ; 108(3): 1164-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26470242

RESUMO

Thrips tabaci Lindeman (Thysanoptera: Thripidae) adult and larval settling and oviposition on onion (Allium cepa L.) foliage were investigated in relation to leaf position and leaf length at prebulb plant growth stages under controlled conditions. In the laboratory, four and six adult females of T. tabaci were released on onion plants at three-leaf stage and six- to eight-leaf stage, respectively, and thrips egg, nymph, and adult count data were collected on each of the three inner most leaves at every 2-cm leaf segment. Thrips settling and oviposition parameters were quantified during the light period on the above ground portion of onion plants from the distal end of the bulb or leaf sheath "neck" through the tips of the foliage. Results from studies confirmed that distribution of thrips adults, nymphs, and eggs were skewed toward the base of the plant. The settling distributions of thrips adults and nymphs differed slightly from the egg distribution in that oviposition occurred all the way to the tip of the leaf while adults and nymphs were typically not observed near the tip. In a field study, the foliage was divided into three equal partitions, i.e., top, middle, basal thirds, and thrips adults by species, primarily Frankliniella fusca (Hinds) and T. tabaci, were collected from each partition to determine if there was a similar bias of all adult thrips toward the base of the plant. The results suggested that adults of different species appear to segregate along leaf length. Finally, thrips oviposition on 2-cm segments and Iris yellow spot virus positive leaf segments were quantified in the field, irrespective of thrips species. Both variables demonstrated a very similar pattern of bias toward the base of the plant and were significantly correlated.


Assuntos
Distribuição Animal , Cebolas/virologia , Oviposição , Doenças das Plantas/virologia , Tisanópteros/fisiologia , Tospovirus/fisiologia , Animais , Cadeia Alimentar , Georgia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Cebolas/fisiologia , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia , Folhas de Planta/fisiologia , Tisanópteros/crescimento & desenvolvimento
13.
J Econ Entomol ; 105(1): 40-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22420253

RESUMO

Thrips-transmitted Iris yellow spot virus (IYSV) (Family Bunyaviridae, Genus Tospovirus) affects onion production in the United States and worldwide. The presence of IYSV in Georgia was confirmed in 2003. Two important thrips species that transmit tospoviruses, the onion thrips (Thrips tabaci (Lindeman)) and the tobacco thrips (Frankliniella fusca (Hinds)) are known to infest onion in Georgia. However, T. tabaci is the only confirmed vector of IYSV. Experiments were conducted to test the vector status of F. fusca in comparison with T. tabaci. F. fusca and T. tabaci larvae and adults reared on IYSV-infected hosts were tested with antiserum specific to the nonstructural protein of IYSV through an antigen coated plate ELISA. The detection rates for F. fusca larvae and adults were 4.5 and 5.1%, respectively, and for T. tabaci larvae and adults they were 20.0 and 24.0%, respectively, indicating that both F. fusca and T. tabaci can transmit IYSV. Further, transmission efficiencies of F. fusca and T. tabaci were evaluated by using an indicator host, lisianthus (Eustoma russellianum (Salisbury)). Both F. fusca and T. tabaci transmitted IYSV at 18.3 and 76.6%, respectively. Results confirmed that F. fusca also can transmit IYSV but at a lower efficiency than T. tabaci. To attest if low vector competency of our laboratory-reared F. fusca population affected its IYSV transmission capability, a Tomato spotted wilt virus (Family Bunyaviridae, Genus Tospovirus) transmission experiment was conducted. F. fusca transmitted Tomato spotted wilt virus at a competent rate (90%) suggesting that the transmission efficiency of a competent thrips vector can widely vary between two closely related viruses.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Insetos Vetores/virologia , Cebolas/virologia , Doenças das Plantas/virologia , Tisanópteros/virologia , Tospovirus/fisiologia , Agricultura , Animais , Gentianaceae/virologia , Georgia , Insetos Vetores/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/virologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Especificidade da Espécie , Tisanópteros/crescimento & desenvolvimento , Tospovirus/genética
14.
Plant Dis ; 95(12): 1520-1527, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30732019

RESUMO

Iris yellow spot virus (IYSV) can severely affect onion production. IYSV is transmitted by the onion thrips, Thrips tabaci. However, information on IYSV-thrips-onion interactions is limited due to the difficulty associated with infecting onion plants experimentally. Lisianthus (Eustoma russellianum) was used as an indicator host to study mechanical transmission of IYSV, IYSV transmission by T. tabaci, IYSV distribution in the host plant, and the effect of temperature on IYSV symptom expression. Mechanical inoculation tests from IYSV-infected onion plants to noninfected lisianthus plants resulted in a mean transmission rate of 82.5 ± 6.9% (mean ± standard error), and from IYSV-infected lisianthus plants to noninfected lisianthus plants resulted in a mean transmission rate of 89.2 ± 7.1%. T. tabaci adults transmitted IYSV at a rate of 80.0 ± 8.3% from infected onion plants to noninfected lisianthus plants. To assess IYSV distribution in infected lisianthus plants, leaf sections, stems, and roots were tested by enzyme-linked immunosorbent assay (ELISA). All the plant parts tested positive for IYSV, but not on every plant assayed. Alternating night and day temperatures of 18 and 23°C, 25 and 30°C, and 30 and 37°C were evaluated for the effects on IYSV symptom expression. More severe symptoms developed on inoculated plants incubated at the 18 and 23°C or 25 and 30°C temperature regimes than at the 30 and 37°C regime, and symptoms were observed earliest on plants incubated at the 25 and 30°C temperature regime compared to the other temperature regimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...