Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Cell Infect Microbiol ; 13: 955134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816585

RESUMO

Malaria, which infected more than 240 million people and killed around six hundred thousand only in 2021, has reclaimed territory after the SARS-CoV-2 pandemic. Together with parasite resistance and a not-yet-optimal vaccine, the need for new approaches has become critical. While earlier, limited, studies have suggested that malaria parasites are affected by electromagnetic energy, the outcomes of this affectation vary and there has not been a study that looks into the mechanism of action behind these responses. In this study, through development and implementation of custom applicators for in vitro experimentation, conditions were generated in which microwave energy (MW) killed more than 90% of the parasites, not by a thermal effect but via a MW energy-induced programmed cell death that does not seem to affect mammalian cell lines. Transmission electron microscopy points to the involvement of the haemozoin-containing food vacuole, which becomes destroyed; while several other experimental approaches demonstrate the involvement of calcium signaling pathways in the resulting effects of exposure to MW. Furthermore, parasites were protected from the effects of MW by calcium channel blockers calmodulin and phosphoinositol. The findings presented here offer a molecular insight into the elusive interactions of oscillating electromagnetic fields with P. falciparum, prove that they are not related to temperature, and present an alternative technology to combat this devastating disease.


Assuntos
COVID-19 , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Micro-Ondas , SARS-CoV-2 , Malária Falciparum/parasitologia , Plasmodium falciparum , Mamíferos
2.
Dialogues Health ; 2: 100117, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38515494

RESUMO

Background: This work aims to analyze the landscape of scientific publications on subjects related to One Health and infectious diseases in Panama. The research questions are: How does the One Health research landscape look like in Panama? Are historical research efforts aligned with the One Health concept? What infectious diseases have received more attention from the local scientific community since 1990? Methods: Boolean searches on the Web of Science, SCOPUS and PubMed were undertaken to evaluate the main trends of publications related to One Health and infectious disease research in the country of Panama, between 1990 and 2019. Results: 4546 publications were identified since 1990, including 3564 peer-reviewed articles interconnected with One Health related descriptors, and 211 articles focused particularly on infectious diseases. A pattern of exponential growth in the number of publications with various contributions from Panamanian institutions was observed. The rate of multidisciplinary research was moderate, whereas those of interinstitutional and intersectoral research ranged from low to very low. Research efforts have centered largely on protozoan, neglected and arthropod-borne diseases with a strong emphasis on malaria, Chagas and leishmaniasis. Conclusion: Panama has scientific capabilities on One Health to tackle future infectious disease threats, but the official collaboration schemes and strategic investment to develop further competencies need to be conciliated with modern times, aka the pandemics era. The main proposition here, addressed to the government of Panama, is to launch a One Health regional center to promote multidisciplinary, interinstitutional and intersectoral research activities in Panama and beyond.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7629-7635, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892856

RESUMO

The COVID-19 pandemic disrupted the world by interrupting most supply chains, including that of the medical supply industry. The threat imposed by export restriction measures and the limitation in the availability of mechanical ventilators posed a higher risk for smaller, developing countries, used to importing most of their technologies. To actively respond to the possible device shortage, the initiative "Ventilators for Panama" was established and was able to develop two different, non-competing, open-source hardware mechanical ventilator models for emergency use in case of shortages: one based on a bag-valve design and another based on positive airway pressure. The aim of this article is to compare both devices in terms of feasibility and functionality. Results from the functional testing show that both devices perform within specification, as the error percentage is lower than 5% for the desired pressure values and a standard deviation of less than 0.5 for all cases.Clinical Relevance- This study shows the feasibility of quickly deploying two different mechanical ventilator designs for emergency use and their effectiveness.


Assuntos
COVID-19 , Países em Desenvolvimento , Estudos de Viabilidade , Humanos , Pandemias , SARS-CoV-2 , Ventiladores Mecânicos
5.
PLoS Negl Trop Dis ; 14(10): e0008849, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33108372

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry is an analytical method that detects macromolecules that can be used for proteomic fingerprinting and taxonomic identification in arthropods. The conventional MALDI approach uses fresh laboratory-reared arthropod specimens to build a reference mass spectra library with high-quality standards required to achieve reliable identification. However, this may not be possible to accomplish in some arthropod groups that are difficult to rear under laboratory conditions, or for which only alcohol preserved samples are available. Here, we generated MALDI mass spectra of highly abundant proteins from the legs of 18 Neotropical species of adult field-collected hard ticks, several of which had not been analyzed by mass spectrometry before. We then used their mass spectra as fingerprints to identify each tick species by applying machine learning and pattern recognition algorithms that combined unsupervised and supervised clustering approaches. Both Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) classification algorithms were able to identify spectra from different tick species, with LDA achieving the best performance when applied to field-collected specimens that did have an existing entry in a reference library of arthropod protein spectra. These findings contribute to the growing literature that ascertains mass spectrometry as a rapid and effective method to complement other well-established techniques for taxonomic identification of disease vectors, which is the first step to predict and manage arthropod-borne pathogens.


Assuntos
Ixodidae/química , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Vetores de Doenças/classificação , Ixodidae/classificação , Ixodidae/metabolismo
6.
Front Public Health ; 8: 553730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042951

RESUMO

The first patient infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Panama was reported on March 9, 2020. Here, we describe the first case of recovery from coronavirus disease 2019 (COVID-19) in the country. The patient was a 49-year-old male high school teacher, who did not show any primary symptoms of COVID-19 described by health authorities as the signs for medical attention. Nonetheless, he became severely ill over the course of 2 weeks and almost lost the battle against COVID-19. The identification of the first cluster of SARS-CoV-2 community transmission in the secondary school where the patient of this case report taught, led to the closure of the school and, a day after, the shutdown of the national education system, which may have prevented the spread and slowed the transmission rate of COVID-19 during the early stages of invasion. This case report highlights the need to increase awareness among healthcare professionals in Latin America to consider symptoms such as anosmia and dysgeusia as the sentinel signs of COVID-19 infection in order to prevent deaths, especially in high-risk patients.


Assuntos
COVID-19 , Disgeusia , Humanos , Masculino , Pessoa de Meia-Idade , Panamá , SARS-CoV-2 , Instituições Acadêmicas
7.
Rev Panam Salud Publica ; 44: e86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612646

RESUMO

The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.


La República de Panamá es el segundo país de Centroamérica con la distribución más desigual de la riqueza, ha resultado afectado recientemente por la pandemia de COVID-19 y tiene una de las mayores tasas de pruebas diagnósticas por habitante de la región y, por consiguiente, la mayor tasa de incidencia de COVID-19. Estos aspectos la convierten en un lugar ideal para examinar posibles escenarios de evaluación de la preparación para la epidemia y para plantear oportunidades de investigación en la Región de las Américas. Se abordan dos preguntas importantes y oportunas: ¿Cuáles son los riesgos singulares de la COVID-19 en Panamá que podrían ayudar a otros países de la Región a estar mejor preparados? y ¿Qué tipo de conocimiento científico puede aportar Panamá al estudio regional y mundial de la COVID-19? En este artículo se presentan sugerencias sobre la forma en que la comunidad de investigadores podría apoyar a las autoridades sanitarias locales a planificar medidas ante diferentes escenarios y disminuir la ansiedad de la población. También se presentan oportunidades científicas básicas sobre patógenos pandémicos emergentes para promover la salud mundial desde la perspectiva de un país de ingresos medios.

8.
Artigo em Inglês | PAHO-IRIS | ID: phr-52375

RESUMO

[ABSTRACT]. The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.


[ABSTRACT]. The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.


Assuntos
Infecções por Coronavirus , Viroses , Pandemias , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Pesquisa , América , COVID-19 , Infecções por Coronavirus , Viroses , Pandemias , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Pesquisa , América
9.
Tissue Eng Part A ; 26(17-18): 964-978, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32103711

RESUMO

Recent advancements in tissue engineering suggest that biomaterials, such as decellularized extracellular matrix (ECM), could serve to potentiate the localization and efficacy of regenerative therapies in the central nervous system. Still, what factors and which mechanisms are required from these ECM-based biomaterials to exert their effect are not entirely understood. In this study, we use the brain as a novel model to test the effects of particular biochemical and structural properties by evaluating, for the first time, three different sections of the brain (i.e., cortex, cerebellum, and remaining areas) side-by-side and their corresponding decellularized counterparts using mechanical (4-day) and chemical (1-day) decellularization protocols. The three different brain subregions had considerably different initial conditions in terms of cell number and growth factor content, and some of these differences were maintained after decellularization. Decellularized ECM from both protocols was used as a substrate or as soluble factor, in both cases showing good cell attachment and growth capabilities. Interestingly, the 1-day protocol was capable of promoting greater differentiation than the 4-day protocol, probably due to its capacity to remove a similar amount of cell nuclei, while better conserving the biochemical and structural components of the cerebral ECM. Still, some limitations of this study include the need to evaluate the response in other biologically relevant cell types, as well as a more detailed characterization of the components in the decellularized ECM of the different brain subregions. In conclusion, our results show differences in neuronal maturation depending on the region of the brain used to produce the scaffolds. Complex organs such as the brain have subregions with very different initial cellular and biochemical conditions that should be considered for decellularization to minimize exposure to immunogenic components, while retaining bioactive factors conducive to regeneration. [Figure: see text] Impact statement The present study offers new knowledge about the production of decellularized extracellular matrix scaffolds from specific regions of the porcine brain, with a direct comparison of their effect on in vitro neuronal maturation. Our results show differences in neuronal maturation depending on the region of the brain used to produce the scaffolds, suggesting that it is necessary to consider the initial cellular content of the source tissue and its bioactive capacity for the production of an effective regenerative therapy for stroke.


Assuntos
Encéfalo , Matriz Extracelular , Neurônios/citologia , Engenharia Tecidual , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Feminino
10.
Rev. panam. salud pública ; 44: e86, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1127122

RESUMO

ABSTRACT The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.(AU)


RESUMEN La República de Panamá es el segundo país de Centroamérica con la distribución más desigual de la riqueza, ha resultado afectado recientemente por la pandemia de COVID-19 y tiene una de las mayores tasas de pruebas diagnósticas por habitante de la región y, por consiguiente, la mayor tasa de incidencia de COVID-19. Estos aspectos la convierten en un lugar ideal para examinar posibles escenarios de evaluación de la preparación para la epidemia y para plantear oportunidades de investigación en la Región de las Américas. Se abordan dos preguntas importantes y oportunas: ¿Cuáles son los riesgos singulares de la COVID-19 en Panamá que podrían ayudar a otros países de la Región a estar mejor preparados? y ¿Qué tipo de conocimiento científico puede aportar Panamá al estudio regional y mundial de la COVID-19? En este artículo se presentan sugerencias sobre la forma en que la comunidad de investigadores podría apoyar a las autoridades sanitarias locales a planificar medidas ante diferentes escenarios y disminuir la ansiedad de la población. También se presentan oportunidades científicas básicas sobre patógenos pandémicos emergentes para promover la salud mundial desde la perspectiva de un país de ingresos medios.(AU)


Assuntos
Humanos , Fatores Socioeconômicos , Surtos de Doenças , Infecções por Coronavirus/epidemiologia , Pandemias/prevenção & controle , Panamá/epidemiologia , América Latina/epidemiologia
11.
Parasit Vectors ; 12(1): 264, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133041

RESUMO

BACKGROUND: The long-distance dispersal of the invasive disease vectors Aedes aegypti and Aedes albopictus has introduced arthropod-borne viruses into new geographical regions, causing a significant medical and economic burden. The used-tire industry is an effective means of Aedes dispersal, yet studies to determine Aedes occurrence and the factors influencing their distribution along local transport networks are lacking. To assess infestation along the primary transport network of Panama we documented all existing garages that trade used tires on the highway and surveyed a subset for Ae. aegypti and Ae. albopictus. We also assess the ability of a mass spectrometry approach to classify mosquito eggs by comparing our findings to those based on traditional larval surveillance. RESULTS: Both Aedes species had a high infestation rate in garages trading used tires along the highways, providing a conduit for rapid dispersal across Panama. However, generalized linear models revealed that the presence of Ae. aegypti is associated with an increase in road density by a log-odds of 0.44 (0.73 ± 0.16; P = 0.002), while the presence of Ae. albopictus is associated with a decrease in road density by a log-odds of 0.36 (0.09 ± 0.63; P = 0.008). Identification of mosquito eggs by mass spectrometry depicted similar occurrence patterns for both Aedes species as that obtained with traditional rearing methods. CONCLUSIONS: Garages trading used tires along highways should be targeted for the surveillance and control of Aedes-mosquitoes and the diseases they transmit. The identification of mosquito eggs using mass spectrometry allows for the rapid evaluation of Aedes presence, affording time and cost advantages over traditional vector surveillance; this is of importance for disease risk assessment.


Assuntos
Aedes , Borracha , Distribuição Animal , Animais , Arbovírus , Larva , Controle de Mosquitos/métodos , Mosquitos Vetores , Veículos Automotores , Panamá , Meios de Transporte
12.
Malar J ; 18(1): 95, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902057

RESUMO

BACKGROUND: Malaria control in Panama is problematic due to the high diversity of morphologically similar Anopheles mosquito species, which makes identification of vectors of human Plasmodium challenging. Strategies by Panamanian health authorities to bring malaria under control targeting Anopheles vectors could be ineffective if they tackle a misidentified species. METHODS: A rapid mass spectrometry identification procedure was developed to accurately and timely sort out field-collected Neotropical Anopheles mosquitoes into vector and non-vector species. Matrix-assisted laser desorption/ionization (MALDI) mass spectra of highly-abundant proteins were generated from laboratory-reared mosquitoes using different extraction protocols, body parts, and sexes to minimize the amount of material from specimen vouchers needed and optimize the protocol for taxonomic identification. Subsequently, the mass spectra of field-collected Neotropical Anopheles mosquito species were classified using a combination of custom-made unsupervised (i.e., Principal component analysis-PCA) and supervised (i.e., Linear discriminant analysis-LDA) classification algorithms. RESULTS: Regardless of the protocol used or the mosquito species and sex, the legs contained the least intra-specific variability with enough well-preserved proteins to differentiate among distinct biological species, consistent with previous literature. After minimizing the amount of material needed from the voucher, one leg was enough to produce reliable spectra between specimens. Further, both PCA and LDA were able to classify up to 12 mosquito species, from different subgenera and seven geographically spread localities across Panama using mass spectra from one leg pair. LDA demonstrated high discriminatory power and consistency, with validation and cross-validation positive identification rates above 93% at the species level. CONCLUSION: The selected sample processing procedure can be used to identify field-collected Anopheles species, including vectors of Plasmodium, in a short period of time, with a minimal amount of tissue and without the need of an expert mosquito taxonomist. This strategy to analyse protein spectra overcomes the drawbacks of working without a reference library to classify unknown samples. Finally, this MALDI approach can aid ongoing malaria eradication efforts in Panama and other countries with large number of mosquito's species by improving vector surveillance in epidemic-prone sites such as indigenous Comarcas.


Assuntos
Anopheles/classificação , Mosquitos Vetores/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Malária/transmissão , Panamá , Plasmodium/fisiologia
13.
J Biomed Mater Res A ; 106(3): 782-796, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29067777

RESUMO

Micro-to-nanoscale surface topographies of orthopaedic and dental implants can affect fluid wetting and biological response. Nanoscale features can be superimposed on microscale roughness of titanium (Ti) surfaces at high temperatures, resulting in increased osteoblast differentiation. However, high temperatures can compromise mechanical properties of the bulk material. Here, we have developed a novel low-temperature microwave hydrothermal (MWHT) oxidation process for nanomodification of microrough (SLA) Ti surfaces. Nanoscale protuberances (20 -100 nm average diameter) were generated on SLA surfaces via MWHT treatment at 200°C in H2 O, or in aqueous solutions of H2 O2 or NH4 OH, for times ranging from 1 to 40 h. The size, shape, and crystalline content of the nanoprotuberances varied with the solution used and treatment time. The hydrophilicity of all MWHT-modified surfaces was dramatically enhanced. MG63 and normal human osteoblasts (NHOsts) were cultured on MWHT-treated SLA surfaces. While most responses to MWHT-modified surfaces were comparable to those seen on SLA controls, the MWHT-generated nanotopography reduced osteocalcin production by NHOst cells, suggesting that specific nanotopographic characteristics differentially mediate osteoblast phenotypic expression. MWHT processing provides a scalable, low-temperature route for tailoring nanoscale topographies on microroughened titanium implant surfaces with significantly enhanced wetting by water, without degrading the microscale surface structure of such implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 782-796, 2018.


Assuntos
Tecnologia Biomédica/métodos , Temperatura Baixa , Micro-Ondas , Titânio/química , Água/química , Linhagem Celular Tumoral , Humanos , Osteoblastos/citologia , Oxirredução , Espectroscopia Fotoeletrônica , Molhabilidade , Difração de Raios X
14.
J Alzheimers Dis ; 60(s1): S87-S105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28453486

RESUMO

Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer's disease. The "regenerative" capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to several disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer's disease.


Assuntos
Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Transtornos Cognitivos/etiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Humanos
15.
PLoS One ; 11(8): e0161207, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27537497

RESUMO

The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways.


Assuntos
Estimulação Elétrica , Plasmodium falciparum/fisiologia , Sinalização do Cálcio/fisiologia , Replicação do DNA , Eletricidade , Citometria de Fluxo , Potencial da Membrana Mitocondrial , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
J Biomed Mater Res A ; 104(8): 2086-98, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27086616

RESUMO

The purpose of this study was to compare the biological effects in vivo of hierarchical surface roughness on laser sintered titanium-aluminum-vanadium (Ti-6Al-4V) implants to those of conventionally machined implants on osteoblast response in vitro and osseointegration. Laser sintered disks were fabricated to have micro-/nano-roughness and wettability. Control disks were computer numerical control (CNC) milled and then polished to be smooth (CNC-M). Laser sintered disks were polished smooth (LST-M), grit blasted (LST-B), or blasted and acid etched (LST-BE). LST-BE implants or implants manufactured by CNC milling and grit blasted (CNC-B) were implanted in the femurs of male New Zealand white rabbits. Most osteoblast differentiation markers and local factors were enhanced on rough LST-B and LST-BE surfaces in comparison to smooth CNC-M or LST-M surfaces for MG63 and normal human osteoblast cells. To determine if LST-BE implants were osteogenic in vivo, we compared them to implant surfaces used clinically. LST-BE implants had a unique surface with combined micro-/nano-roughness and higher wettability than conventional CNC-B implants. Histomorphometric analysis demonstrated a significant improvement in cortical bone-implant contact of LST-BE implants compared to CNC-B implants after 3 and 6 weeks. However, mechanical testing revealed no differences between implant pullout forces at those time points. LST surfaces enhanced osteoblast differentiation and production of local factors in vitro and improved the osseointegration process in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2086-2098, 2016.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Lasers , Nanoestruturas/química , Osseointegração/efeitos dos fármacos , Osteoblastos/citologia , Titânio/farmacologia , Ligas , Animais , Linhagem Celular , Humanos , Implantes Experimentais , Masculino , Teste de Materiais , Modelos Animais , Osteoblastos/efeitos dos fármacos , Coelhos , Espectrometria por Raios X , Molhabilidade , Microtomografia por Raio-X
17.
J Biomed Mater Res A ; 103(6): 1907-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25203434

RESUMO

Hierarchical surface roughness of titanium and titanium alloy implants plays an important role in osseointegration. In vitro and in vivo studies show greater osteoblast differentiation and bone formation when implants have submicron-scale textured surfaces. In this study, we tested the potential benefit of combining a submicron-scale textured surface with three-dimensional (3D) structure on osteoblast differentiation and the involvement of an integrin-driven mechanism. 3D titanium scaffolds were made using orderly oriented titanium meshes and microroughness was added to the wire surface by acid-etching. MG63 and human osteoblasts were seeded on 3D scaffolds and 2D surfaces with or without acid etching. At confluence, increased osteocalcin, vascular endothelial growth factor, osteoprotegerin (OPG), and alkaline phosphatase (ALP) activity were observed in MG63 and human osteoblasts on 3D scaffolds in comparison to 2D surfaces at the protein level, indicating enhanced osteoblast differentiation. To further investigate the mechanism of osteoblast-3D scaffold interaction, the role of integrin α2ß1 was examined. The results showed ß1 and α2ß1 integrin silencing abolished the increase in osteoblastic differentiation markers on 3D scaffolds. Time course studies showed osteoblasts matured faster in the 3D environment in the early stage of culture, while as cells proliferated, the maturation slowed down to a comparative level as 2D surfaces. After 12 days of postconfluent culture, osteoblasts on 3D scaffolds showed a second-phase increase in ALP activity. This study shows that osteoblastic differentiation is improved on 3D scaffolds with submicron-scale texture and is mediated by integrin α2ß1.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Integrina alfa2beta1/metabolismo , Osteoblastos/citologia , Tamanho da Partícula , Alicerces Teciduais/química , Titânio/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Propriedades de Superfície
18.
J Biomed Mater Res A ; 103(2): 564-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24733736

RESUMO

Surface microroughness plays an important role in determining osteoblast behavior on titanium. Previous studies have shown that osteoblast differentiation on microtextured titanium substrates is dependent on alpha-2 beta-1 (α2ß1) integrin signaling. This study used focused ion beam milling and scanning electron microscopy, combined with three-dimensional image reconstruction, to investigate early interactions of individual cells with their substrate and the role of integrin α2ß1 in determining cell shape. MG63 osteoblast-like cells on sand blasted/acid etched (SLA) Ti surfaces after 3 days of culturing indicated decreased cell number, increased cell differentiation, and increased expression of mRNA levels for α1, α2, αV, and ß1 integrin subunits compared to cells on smooth Ti (PT) surfaces. α2 or ß1 silenced cells exhibited increased cell number and decreased differentiation on SLA compared to wild-type cells. Wild-type cells on SLA possessed an elongated morphology with reduced cell area, increased cell thickness, and more apparent contact points. Cells on PT exhibited greater spreading and were relatively flat. Silenced cells possessed a morphology and phenotype similar to wild-type cells grown on PT. These observations indicate that surface microroughness affects cell response via α2ß1 integrin signaling, resulting in a cell shape that promotes osteoblastic differentiation.


Assuntos
Diferenciação Celular , Forma Celular , Integrina alfa2beta1/biossíntese , Osteoblastos/metabolismo , Titânio/química , Animais , Camundongos , Osteoblastos/citologia , Propriedades de Superfície
19.
Connect Tissue Res ; 55 Suppl 1: 164-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158204

RESUMO

Recent studies of new surface modifications that superimpose well-defined nanostructures on microrough implants, thereby mimicking the hierarchical complexity of native bone, report synergistically enhanced osteoblast maturation and local factor production at the protein level compared to growth on surfaces that are smooth, nanorough, or microrough. Whether the complex micro/nanorough surfaces enhance the osteogenic response by triggering similar patterns of integrin receptors and their associated signaling pathways as with well-established microrough surfaces, is not well understood. Human osteoblasts (hOBs) were cultured until confluent for gene expression studies on tissue culture polystyrene (TCPS) or on titanium alloy (Ti6Al4V) disks with different surface topographies: smooth, nanorough, microrough, and micro/nanorough surfaces. mRNA expression of osteogenesis-related markers such as osteocalcin (BGLAP) and bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2), BMP4, noggin (NOG) and gremlin 1 (GREM1) were all higher on microrough and micro/nanorough surfaces, with few differences between them, compared to smooth and nanorough groups. Interestingly, expression of integrins α1 and α2, which interact primarily with collagens and laminin and have been commonly associated with osteoblast differentiation on microrough Ti and Ti6Al4V, were expressed at lower levels on micro/nanorough surfaces compared to microrough ones. Conversely, the αv subunit, which binds ligands such as vitronectin, osteopontin, and bone sialoprotein among others, had higher expression on micro/nanorough surfaces concomitantly with regulation of the ß3 mRNA levels on nanomodified surfaces. These results suggest that the maturation of osteoblasts on micro/nanorough surfaces may be occurring through different integrin engagement than those established for microrough-only surfaces.


Assuntos
Alumínio/química , Diferenciação Celular/fisiologia , Integrinas/metabolismo , Nanoestruturas , Osteoblastos/citologia , Titânio/química , Vanádio/química , Ligas , Humanos , Sialoproteína de Ligação à Integrina/metabolismo , Osteogênese/fisiologia , Propriedades de Superfície
20.
Acta Biomater ; 10(7): 2907-18, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24709541

RESUMO

Dental and orthopedic implants have been under continuous advancement to improve their interactions with bone and ensure a successful outcome for patients. Surface characteristics such as surface topography and surface chemistry can serve as design tools to enhance the biological response around the implant, with in vitro, in vivo and clinical studies confirming their effects. However, the comprehensive design of implants to promote early and long-term osseointegration requires a better understanding of the role of surface wettability and the mechanisms by which it affects the surrounding biological environment. This review provides a general overview of the available information about the contact angle values of experimental and of marketed implant surfaces, some of the techniques used to modify surface wettability of implants, and results from in vitro and clinical studies. We aim to expand the current understanding on the role of wettability of metallic implants at their interface with blood and the biological milieu, as well as with bacteria, and hard and soft tissues.


Assuntos
Implantes Dentários , Propriedades de Superfície , Molhabilidade , Humanos , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...