Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Transl Med ; 21(1): 780, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924062

RESUMO

BACKGROUND: Follicular thyroid cancer (FTC) is a prevalent form of differentiated thyroid cancer, whereas anaplastic thyroid cancer (ATC) represents a rare, fast-growing, undifferentiated, and highly aggressive tumor, posing significant challenges for eradication. Ferroptosis, an iron-dependent cell death mechanism driven by the excessive production of reactive oxygen species and subsequent lipid peroxidation, emerges as a promising therapeutic strategy for cancer. It has been observed that many cancer cells exhibit sensitivity to ferroptosis, while some other histotypes appear to be resistant, by counteracting the metabolic changes and oxidative stress induced by iron overload. METHODS: Here we used human biopsies and in vitro approaches to analyse the effects of iron-dependent cell death. We assessed cell proliferation and viability through MTT turnover, clonogenic assays, and cytofluorimetric-assisted analysis. Lipid peroxidation assay and western blot were used to analyse molecular mechanisms underlying ferroptosis modulation. Two distinct thyroid cancer cell lines, FTC-133 (follicular) and 8505C (anaplastic), were utilized. These cell lines were exposed to ferroptosis inducers, Erastin and RSL3, while simulating an iron overload condition using ferric ammonium citrate. RESULTS: Our evidence suggests that FTC-133 cell line, exposed to iron overload, reduced their viability and showed increased ferroptosis. In contrast, the 8505C cell line seems to better tolerate ferroptosis, responding by modulating CD71, which is involved in iron internalization and seems to have a role in resistance to iron overload and consequently in maintaining cell viability. CONCLUSIONS: The differential tolerance to ferroptosis observed in our study may hold clinical implications, particularly in addressing the unmet therapeutic needs associated with ATC treatment, where resistance to ferroptosis appears more pronounced compared to FTC.


Assuntos
Sobrecarga de Ferro , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/complicações , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Morte Celular , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Cancers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37345134

RESUMO

Oral squamous cell carcinoma (OSCC) is a commonly occurring head and neck cancer and it is characterized by a high metastasis grade. The aim of this study was to evaluate for the first time the effect of BAY-117082, a selective NLRP3 inflammasome inhibitor, in an in vivo orthotopic model of OSCC and its role in the invasiveness and metastasis processes in neighbor organs such as lymph node, lung, and spleen tissues. Our results demonstrated that BAY-117082 treatment, at doses of 2.5 mg/kg and 5 mg/kg, was able to significantly reduce the presence of microscopic tumor islands and nuclear pleomorphism in tongue tissues and modulate the NLRP3 inflammasome pathway activation in tongue tissues, as well as in metastatic organs such as lung and spleen. Additionally, BAY-117082 treatment modulated the epithelial-mesenchymal transition (EMT) process in tongue tissue as well as in metastatic organs such as lymph node, lung, and spleen, also reducing the expression of matrix metalloproteinases (MMPs), particularly MMP2 and MMP9, markers of cell invasion and migration. In conclusion, the obtained data demonstrated that BAY-117082 at doses of 2.5 mg/kg and 5 mg/kg were able to reduce the tongue tumor area as well as the degree of metastasis in lymph node, lung, and spleen tissues through the NLRP3 inflammasome pathway inhibition.

4.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048074

RESUMO

Cancer is the leading cause of death worldwide; thus, it is necessary to find successful strategies. Several growth factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF, FGF2), and transforming growth factor beta (TGF-ß), are involved in the main processes that fuel tumor growth, i.e., cell proliferation, angiogenesis, and metastasis, by activating important signaling pathways, including PLC-γ/PI3/Ca2+ signaling, leading to PKC activation. Here, we focused on bFGF, which, when secreted by tumor cells, mediates several signal transductions and plays an influential role in tumor cells and in the development of chemoresistance. The biological mechanism of bFGF is shown by its interaction with its four receptor subtypes: fibroblast growth factor receptor (FGFR) 1, FGFR2, FGFR3, and FGFR4. The bFGF-FGFR interaction stimulates tumor cell proliferation and invasion, resulting in an upregulation of pro-inflammatory and anti-apoptotic tumor cell proteins. Considering the involvement of the bFGF/FGFR axis in oncogenesis, preclinical and clinical studies have been conducted to develop new therapeutic strategies, alone and/or in combination, aimed at intervening on the bFGF/FGFR axis. Therefore, this review aimed to comprehensively examine the biological mechanisms underlying bFGF in the tumor microenvironment, the different anticancer therapies currently available that target the FGFRs, and the prognostic value of bFGF.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Neoplasias , Humanos , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Prognóstico , Neoplasias/tratamento farmacológico , Transdução de Sinais , Microambiente Tumoral
5.
Front Pharmacol ; 14: 1258108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235113

RESUMO

Background and purpose: Lung cancer is the leading cause of death in both men and women, constituting a major public health problem worldwide. Non-small-cell lung cancer accounts for 85%-90% of all lung cancers. We propose a compound that successfully fights tumor growth in vivo by targeting the enzyme GARS1. Experimental approach: We present an in-depth investigation of the mechanism through which Fraisinib [meso-(p-acetamidophenyl)-calix(4)pyrrole] affects the human lung adenocarcinoma A549 cell line. In a xenografted model of non-small-cell lung cancer, Fraisinib was found to reduce tumor mass volume without affecting the vital parameters or body weight of mice. Through a computational approach, we uncovered that glycyl-tRNA synthetase is its molecular target. Differential proteomics analysis further confirmed that pathways regulated by Fraisinib are consistent with glycyl-tRNA synthetase inhibition. Key results: Fraisinib displays a strong anti-tumoral potential coupled with limited toxicity in mice. Glycyl-tRNA synthetase has been identified and validated as a protein target of this compound. By inhibiting GARS1, Fraisinib modulates different key biological processes involved in tumoral growth, aggressiveness, and invasiveness. Conclusion and implications: The overall results indicate that Fraisinib is a powerful inhibitor of non-small-cell lung cancer growth by exerting its action on the enzyme GARS1 while displaying marginal toxicity in animal models. Together with the proven ability of this compound to cross the blood-brain barrier, we can assess that Fraisinib can kill two birds with one stone: targeting the primary tumor and its metastases "in one shot." Taken together, we suggest that inhibiting GARS1 expression and/or GARS1 enzymatic activity may be innovative molecular targets for cancer treatment.

6.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36555359

RESUMO

Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathology; interestingly, PP2A appears to be essential for controlling cell growth and may be involved in cancer development. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. To leverage the potential clinical utility of combination PP2A inhibition and radiotherapy treatment, it is vital that novel highly specific PP2A inhibitors be developed. In this review, the existing literature on the role of PP2A in brain tumors, especially in gliomas and glioblastoma (GBM), was analyzed. Interestingly, the review focused on the role of PP2A inhibitors, focusing on CIP2A inhibition, as CIP2A participated in tumor cell growth by stimulating cell-renewal survival, cellular proliferation, evasion of senescence and inhibition of apoptosis. This review suggested CIP2A inhibition as a promising strategy in oncology target therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteína Fosfatase 2 , Humanos , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína Fosfatase 2/metabolismo
7.
Front Oncol ; 12: 837400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646627

RESUMO

Radiotherapy represents a first-line treatment for many inoperable lung tumors. New technologies offer novel opportunities for the treatment of lung cancer with the administration of higher doses of radiation in smaller volumes. Because both therapeutic and toxic treatment effects are dose-dependent, it is important to identify a minimal dose protocol for each individual patient that maintains efficacy while decreasing toxicity. Cancer stem cells sustain tumor growth, promote metastatic dissemination, and may give rise to secondary resistance. The identification of effective protocols targeting these cells may improve disease-free survival of treated patients. In this work, we evaluated the existence of individual profiles of sensitivity to radiotherapy in patient-derived cancer stem cells (CSCs) using both in vitro and in vivo models. Both CSCs in vitro and mice implanted with CSCs were treated with radiotherapy at different dose intensities and rates. CSC response to different radiation doses greatly varied among patients. In vitro radiation sensitivity of CSCs corresponded to the therapeutic outcome in the corresponding mouse tumor model. On the other side, the dose administration rate did not affect the response. These findings suggest that in vitro evaluation of CSCs may potentially predict patients' response, thus guiding clinical decision.

8.
Oncotarget ; 12(25): 2459-2473, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34917264

RESUMO

Oral squamous cell-carcinoma (OSCC) is a common cancer which arises from the alveolar ridge, buccal mucosa, and tongue. Among OSCC, the incidence of tongue squamous cell-carcinoma (TSCC) is growing all over the world. Oral carcinogenesis has been linked to genetic mutations, chromosomal aberrations and viral factors. Apoptosis and angiogenesis play a key role in the development of oral cancer. Therefore, it is very important discover new therapeutic strategies to counteract oral cancer progression. This study aimed to investigate the effect of KYP-2047 in an in vitro model of TSCC and in vivo CAL27-xenograft model. Our results demonstrated that KYP-2047 was able to reduce TSCCs cell viability at the concentrations of 50 µM and 100 µM. Additionally, KYP-2047 was able to increase Bax, Bad and caspase-3 expression, whereas Bcl-2 and p53 expression were reduced. Moreover, KYP-2047 significantly reduced vascular-endothelial-growth-factor (VEGF) and endothelial-nitric-oxide-synthase (eNOS) expression. In the vivo xenograft model, KYP-2047 at doses of 1 and 5 mg/kg significantly reduced tumor burden and tumor weight, decreasing also angiogenesis markers VEGF and eNOS. Moreover, KYP-2047 increased Bax and reduced Bcl2 expressions. Thus, KYP-2047 could represent a potential therapeutic treatment to counteract tongue oral-cancer growth, thanks its abilities to modulate angiogenesis and apoptosis pathways.

9.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639030

RESUMO

During the cell cycle, DNA suffers several lesions that need to be repaired prior to entry into mitosis to preserve genome integrity in daughter cells. Toward this aim, cells have developed complex enzymatic machinery, the so-called DNA damage response (DDR), which is able to repair DNA, temporarily stopping the cell cycle to provide more time to repair, or if the damage is too severe, inducing apoptosis. This DDR mechanism is considered the main source of resistance to DNA-damaging therapeutic treatments in oncology. Recently, cancer stem cells (CSCs), which are a small subset of tumor cells, were identified as tumor-initiating cells. CSCs possess self-renewal potential and persistent tumorigenic capacity, allowing for tumor re-growth and relapse. Compared with cancer cells, CSCs are more resistant to therapeutic treatments. Wee1 is the principal gatekeeper for both G2/M and S-phase checkpoints, where it plays a key role in cell cycle regulation and DNA damage repair. From this perspective, Wee1 inhibition might increase the effectiveness of DNA-damaging treatments, such as radiotherapy, forcing tumor cells and CSCs to enter into mitosis, even with damaged DNA, leading to mitotic catastrophe and subsequent cell death.


Assuntos
Biomarcadores Tumorais , Proteínas de Ciclo Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Tirosina Quinases/genética , Tolerância a Radiação/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Terapia Combinada , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Família Multigênica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Especificidade de Órgãos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo
10.
Cancers (Basel) ; 12(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297488

RESUMO

Neo-adjuvant radiotherapy is frequently employed in the therapeutic management of locally advanced rectal cancer (LARC). Radiotherapy can both reduce local recurrence and improve the success of surgical procedures by reducing tumor mass size. However, some patients show a poor response to treatment, which results in primary resistance or relapse after apparent curative surgery. In this work, we report in vitro and in vivo models based on patient-derived cancer stem cells (CSCs); these models are able to predict individual responses to radiotherapy in LARC. CSCs isolated from colorectal cancer biopsies were subjected to in vitro irradiation with the same clinical protocol used for LARC patients. Animal models, generated by CSC xenotransplantation, were also obtained and treated with the same radiotherapy protocol. The results indicate that CSCs isolated from rectal cancer needle biopsies possess an intrinsic grade of sensitivity to treatment, which is also maintained in the animal model. Notably, the specific CSCs' in vitro and in vivo sensitivity values correspond to patients' responses to radiotherapy. This evidence suggests that an in vitro radiotherapy response predictivity assay could support clinical decisions for the management of LARC patients, thus avoiding radiation toxicity to resistant patients and reducing the treatment costs.

11.
Int J Surg Oncol ; 2019: 2715260, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737363

RESUMO

BACKGROUND: Despite a large amount of data, the optimal surgical management of differentiated thyroid cancer remains controversial. Current guidelines recommend total thyroidectomy if primary thyroid cancer is >4 cm, while for tumors that are between 1 and 4 cm in size, either a bilateral or a unilateral thyroidectomy may be appropriate as surgical treatment. In general, total thyroidectomy would seem to be preferable because subtotal resection can be correlated with a higher risk of local recurrences and cervical lymph node metastases; on the other hand, total thyroidectomy is associated with more complications. METHODS: This is a retrospective study conducted on 359 patients with differentiated thyroid cancer, subjected to total thyroidectomy. Our aim was to correlate clinical and pathological features (extrathyroid tumor growth, bilaterality, nodal and distant metastasis) with patient (gender and age) and tumor (size and histotype) characteristics. Moreover, we recorded postoperative complications, including hypoparathyroidism and laryngeal nerve damage. RESULTS: In our study, we found a high occurrence of pathological features indicating cancer aggressiveness (bilaterality, nodal metastases, and extrathyroid invasion). On the other hand, total thyroidectomy was associated with relatively low postsurgical complication rates. CONCLUSIONS: Our data support the view that total thyroidectomy remains the first choice for the routine treatment of differentiated thyroid cancer.


Assuntos
Neoplasias da Glândula Tireoide/patologia , Tireoidectomia , Adenocarcinoma Folicular/patologia , Adenocarcinoma Folicular/cirurgia , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Complicações Pós-Operatórias , Estudos Retrospectivos , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/cirurgia , Neoplasias da Glândula Tireoide/cirurgia
12.
Front Physiol ; 8: 984, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238307

RESUMO

Injured articular cartilage has a limited innate regenerative capacity, due to the avascular nature and low cellularity of the tissue itself. Although several approaches have been proposed to repair the joint cartilage, none of them has proven to be effective. The absence of suitable therapeutic options has encouraged tissue-engineering approaches combining specific cell types and biomaterials. In the present work, we have evaluated the potential of a cell-free Collagen I-based scaffold to promote the augmentation of cartilage-like phenotype after subcutaneous implantation in the mouse. Forty female mice were grafted subcutaneously with scaffolds, while four additional mice without scaffold were used as negative controls. The effects of scaffold were evaluated at 1, 2, 4, 8, or 16 weeks after implantation. Immunohistochemical analysis shows the expression of typical cartilage markers, including type-II Collagen, Aggrecan, Matrilin-1 and Sox 9. These data are also confirmed by qRT-PCR that further show that both COL2A1 and COL1A1 increase over time, but the first one increases more rapidly, thus suggesting a typical cartilage-like address. Histological analysis shows the presence of some pericellular lacunae, after 8 and 16 weeks. Results suggest that this scaffold (i) is biocompatible in vivo, (ii) is able to recruit host cells (iii) induce chondrogenic differentiation of host cells. Such evidences suggest that this cell-free scaffold is promising and represents a potential approach for cartilage regeneration.

13.
Sci Rep ; 7(1): 7110, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28769083

RESUMO

Traumatic injury or surgical excision of diseased bone tissue usually require the reconstruction of large bone defects unable to heal spontaneously, especially in older individuals. This is a big challenge requiring the development of biomaterials mimicking the bone structure and capable of inducing the right commitment of cells seeded within the scaffold. In particular, given their properties and large availability, the human adipose-derived stem cells are considered as the better candidate for autologous cell transplantation. In order to evaluate the regenerative potential of these cells along with an osteoinductive biomaterial, we have used collagen/hydroxyapatite scaffolds to test ectopic bone formation after subcutaneous implantation in mice. The process was analysed both in vivo, by Fluorescent Molecular Tomography (FMT), and ex vivo, to evaluate the formation of bone and vascular structures. The results have shown that the biomaterial could itself be able of promoting differentiation of host cells and bone formation, probably by means of its intrinsic chemical and structural properties, namely the microenvironment. However, when charged with human mesenchymal stem cells, the ectopic bone formation within the scaffold was increased. We believe that these results represent an important advancement in the field of bone physiology, as well as in regenerative medicine.


Assuntos
Tecido Adiposo/citologia , Regeneração Óssea , Colágeno , Durapatita , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Biomarcadores , Transplante Ósseo , Técnicas de Cultura de Células , Citometria de Fluxo , Imunofluorescência , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neovascularização Fisiológica , Osteogênese , Engenharia Tecidual
14.
Front Physiol ; 8: 50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28210226

RESUMO

Recently, multipotent mesenchymal stem cells (MSCs) have attracted much attention in the field of regenerative medicine due to their ability to give rise to different cell types, including chondrocytes. Damaged articular cartilage repair is one of the most challenging issues for regenerative medicine, due to the intrinsic limited capability of cartilage to heal because of its avascular nature. While surgical approaches like chondral autografts and allografts provide symptoms and function improvement only for a short period, MSC based stimulation therapies, like microfracture surgery or autologous matrix-induced chondrogenesis demonstrate to be more effective. The use of adult chondrocytes, which are the main cellular constituent of cartilage, in medical practice, is indeed limited due to their instability in monolayer culture and difficulty to collect donor tissue (articular and nasal cartilage). The most recent cartilage engineering approaches combine cells, biomaterial scaffold and bioactive factors to promote functional tissue replacements. Many recent evidences demonstrate that scaffolds providing specific microenvironmental conditions can promote MSCs differentiation toward a functional phenotype. In the present work, the chondrogenic potential of a new Collagen I based 3D scaffold has been assessed in vitro, in combination with human adipose-derived MSCs which possess a higher chondrogenic potential compared to MSCs isolated from other tissues. Our data indicate that the scaffold was able to promote the early stages of chondrogenic commitment and that supplementation of specific soluble factors was able to induce the complete differentiation of MSCs in chondrocytes as demonstrated by the appearance of cartilage distinctive markers (Sox 9, Aggrecan, Matrilin-1, and Collagen II), as well as by the cartilage-specific Alcian Blue staining and by the acquisition of typical cellular morphology. Such evidences suggest that the investigated scaffold formulation could be suitable for the production of medical devices that can be beneficial in the field of articular cartilage engineering, thus improving the efficacy and durability of the current therapeutic options.

15.
Sci Rep ; 6: 36399, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27821853

RESUMO

The bone grafting is the classical way to treat large bone defects. Among the available techniques, autologous bone grafting is still the most used but, however, it can cause complications such as infection and donor site morbidity. Alternative and innovative methods rely on the development of biomaterials mimicking the structure and properties of natural bone. In this study, we characterized a cell-free scaffold, which was subcutaneously implanted in mice and then analyzed both in vivo and ex vivo after 1, 2, 4, 8 and 16 weeks, respectively. Two types of biomaterials, made of either collagen alone or collagen plus magnesium-enriched hydroxyapatite have been used. The results indicate that bone augmentation and angiogenesis could spontaneously occur into the biomaterial, probably by the recruitment of host cells, and that the composition of the scaffolds is crucial. In particular, the biomaterial more closely mimicking the native bone drives the process of bone augmentation more efficiently. Gene expression analysis and immunohistochemistry demonstrate the expression of typical markers of osteogenesis by the host cells populating the scaffold. Our data suggest that this biomaterial could represent a promising tool for the reconstruction of large bone defects, without using exogenous living cells or growth factors.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Colágeno/farmacologia , Durapatita/química , Animais , Colágeno/química , Camundongos , Osteogênese , Alicerces Teciduais
16.
Oncol Lett ; 12(1): 687-691, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27347201

RESUMO

Thyroid carcinoma is the most common endocrine neoplasm, with the highest mortality rate of all the endocrine cancers. Among the endocrine malignancies, ~80% are papillary thyroid carcinomas (PTCs). In the initiation and progression of this tumor, genetic alterations in the mitogen-associated protein kinase pathway, including RAS point mutations, RET/PTC oncogene rearrangements and BRAF point mutations, play an important role, particularly in deciding targeted therapy. In the present study, a small population of thyroid tumor cells, known as tumor spheres, were isolated and characterized from PTC surgical samples. These spheres can be expanded indefinitely in vitro and give rise to differentiated adherent cells when cultivated in differentiative conditions. The present study showed by reverse transcription-polymerase chain reaction and flow cytometric analysis that the undifferentiated PTC cells exhibited a characteristic antigen expression profile of adult progenitor/stem cells. The cells were more resistant to chemotherapeutics, including bortezomib, taxol, cisplatin, etoposide, doxorubicin and vincristine, than differentiated PTC cells and the majority possessed a quiescent status, as revealed by the various cell cycle characteristics and anti-apoptotic protein expression. Such advances in cancer thyroid stem cell biology may provide relevant information for future targeted therapies.

17.
PLoS One ; 11(3): e0151181, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982592

RESUMO

Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects.


Assuntos
Tecido Adiposo/citologia , Osso e Ossos/citologia , Diferenciação Celular , Colágeno/química , Durapatita/química , Células-Tronco/citologia , Alicerces Teciduais , Tecido Adiposo/metabolismo , Materiais Biocompatíveis , Biomimética , Osso e Ossos/metabolismo , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Células-Tronco/metabolismo
18.
Stem Cells Int ; 2016: 5282185, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26770207

RESUMO

Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB) family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2), encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

19.
Int J Mol Sci ; 16(7): 15609-24, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26184166

RESUMO

The Low-Affinity Nerve Growth Factor Receptor (LNGFR), also known as CD271, is a member of the tumor necrosis factor receptor superfamily. The CD271 cell surface marker defines a subset of multipotential mesenchymal stromal cells and may be used to isolate and enrich cells derived from bone marrow aspirate. In this study, we compare the proliferative and differentiation potentials of CD271+ and CD271- mesenchymal stromal cells. Mesenchymal stromal cells were isolated from bone marrow aspirate and adipose tissue by plastic adherence and positive selection. The proliferation and differentiation potentials of CD271+ and CD271- mesenchymal stromal cells were assessed by inducing osteogenic, adipogenic and chondrogenic in vitro differentiation. Compared to CD271+, CD271- mesenchymal stromal cells showed a lower proliferation rate and a decreased ability to give rise to osteocytes, adipocytes and chondrocytes. Furthermore, we observed that CD271+ mesenchymal stromal cells isolated from adipose tissue displayed a higher efficiency of proliferation and trilineage differentiation compared to CD271+ mesenchymal stromal cells isolated from bone marrow samples, although the CD271 expression levels were comparable. In conclusion, these data show that both the presence of CD271 antigen and the source of mesenchymal stromal cells represent important factors in determining the ability of the cells to proliferate and differentiate.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Adipogenia , Idoso , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese , Feminino , Humanos , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Osteogênese , Fenótipo
20.
Leuk Res ; 37(12): 1616-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24183830

RESUMO

CD200 is a relatively ubiquitously expressed molecule that plays a role in cancer immune evasion through interaction with its receptors. High expression levels of CD200 have been described in different human malignancies. For example, CD200 has been shown to be targeted after RAS/RAF/MEK/ERK activation in melanoma. Here we present the analysis of CD200 expression in human Multiple Myeloma (MM) samples. We found that CD200-positive cells express ERK and p-ERK. Moreover, UO126, a MEK inhibitor, reduces CD200 expression. Furthermore, we observe that CD200-positive cells show reduced immunogenicity compared to normal lymphocytes and that such immunogenicity increases when UO126 is used. We therefore hypothesize that CD200 expression in MM could suppress antitumor response and that anti-CD200 treatment might be therapeutically beneficial in CD200-expressing tumors.


Assuntos
Antígenos CD/metabolismo , Mieloma Múltiplo/metabolismo , Antígenos de Superfície/metabolismo , Biomarcadores Tumorais/metabolismo , Butadienos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Teste de Cultura Mista de Linfócitos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Nitrilas/farmacologia , Receptores de Orexina , Receptores de Superfície Celular/metabolismo , Evasão Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...