Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Med Phys ; 45(1): 60-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29148575

RESUMO

BACKGROUND: Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility. Our study could help as a guideline to make the trade-off between treatment quality and time in existing PBS centers and in future systems. METHODS: We created plans for seven patients and a phantom, with different tumor sites and volumes, and compared the effect of small-, medium-, and large-spot widths (σ = 2.5, 5, and 10 mm) and interspot distances (1σ, 1.5σ, and 1.75σ) on dose, spot charge, and treatment time. Moreover, we quantified how postplanning charge threshold cuts affect plan quality and the total number of spots to deliver, for different spot widths and interspot distances. We show the effect of a minimum charge (or MU) cutoff value for a given proton delivery system. RESULTS: Spot size had a strong influence on dose: larger spots resulted in more protons delivered outside the target region. We observed dose differences of 2-13 Gy (RBE) between 2.5 mm and 10 mm spots, where the amount of extra dose was due to dose penumbra around the target region. Interspot distance had little influence on dose quality for our patient group. Both parameters strongly influence spot charge in the plans and thus the possible impact of postplanning charge threshold cuts. If such charge thresholds are not included in the treatment planning system (TPS), it is important that the practitioner validates that a given combination of lower charge threshold, interspot spacing, and spot size does not result in a plan degradation. Low average spot charge occurs for small spots, small interspot distances, many beam directions, and low fractional dose values. CONCLUSIONS: The choice of spot parameters values is a trade-off between accelerator and beam line design, plan quality, and treatment efficiency. We recommend the use of small spot sizes for better organ-at-risk sparing and lateral interspot distances of 1.5σ to avoid long treatment times. We note that plan quality is influenced by the charge cutoff. Our results show that the charge cutoff can be sufficiently large (i.e., 106 protons) to accommodate limitations on beam delivery systems. It is, therefore, not necessary per se to include the charge cutoff in the treatment planning optimization such that Pareto navigation (e.g., as practiced at our institution) is not excluded and optimal plans can be obtained without, perhaps, a bias from the charge cutoff. We recommend that the impact of a minimum charge cut impact is carefully verified for the spot sizes and spot distances applied or that it is accommodated in the TPS.


Assuntos
Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada
2.
Med Phys ; 44(8): 3923-3931, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28569997

RESUMO

BACKGROUND: Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging. METHODS: Through perturbation of spot charge in treatment plans for seven patients and a phantom, we evaluated the dose impact of absolute (up to 5× 106 protons) and relative (up to 30%) charge errors. We investigated the dependence on beam width by studying scenarios with small, medium and large beam sizes. Treatment plan statistics included the Γ passing rate, dose-volume-histograms and dose differences. RESULTS: The allowable absolute charge error for small spot plans was about 2× 106 protons. Larger limits would be allowed if larger spots were used. For relative errors, the maximum allowable error size for small, medium and large spots was about 13%, 8% and 6% for small, medium and large spots, respectively. CONCLUSIONS: Dose distributions turned out to be surprisingly robust against random spot charge perturbation. Our study suggests that ensuring spot charge errors as small as 1-2% as is commonly aimed at in conventional proton therapy machines, is clinically not strictly needed.


Assuntos
Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Terapia com Prótons , Prótons
3.
Mol Immunol ; 63(1): 94-103, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24671125

RESUMO

It has been proven that both resting and activated mast cells (MCs) and basophils are able to induce a significant increase in proliferation and survival of naïve and activated B cells, and their differentiation into antibody-producing cells. The immunological context in which this regulation occurs is of particular interest and the idea that these innate cells induce antibody class switching and production is increasingly gaining ground. This direct role of MCs and basophils in acquired immunity requires cell to cell contact as well as soluble factors and exosomes. Here, we review our current understanding of the interaction between B cells and MCs or basophils as well as the evidence supporting B lymphocyte-MC/basophil crosstalk in pathological settings. Furthermore, we underline the obscure aspects of this interaction that could serve as important starting points for future research in the field of MC and basophil biology in the peculiar context of the connection between innate and adaptive immunity.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Basófilos/imunologia , Mastócitos/imunologia , Neoplasias/imunologia , Comunicação Celular/imunologia , Diferenciação Celular , Proliferação de Células , Citocinas/imunologia , Exossomos/imunologia , Humanos , Mastócitos/citologia , Neovascularização Patológica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...